Revealing the Hemispherical Shielding Effect of SiO2@Ag Composite Nanospheres to Improve the Surface Enhanced Raman Scattering Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of SiO2 Nanospheres
2.3. Preparation of SiO2@Ag Composite Nanospheres
2.4. SERS Measurement
2.5. 3D Simulated Mode
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alula, M.T.; Lemmens, P.; Bo, L.; Wulferding, D.; Yang, J.; Spende, H. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2019, 1073, 62–71. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Rapid SERS detection of acid orange II and brilliant blue in food by using Fe3O4@Au core-shell substrate. Food Chem. 2019, 270, 173–180. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Wang, X.; Hu, Y. Complementary enhanced solar thermal conversion performance of core shell nanoparticles. Appl. Energy 2018, 211, 735–742. [Google Scholar] [CrossRef]
- He, Q.; Zhao, A.; Li, L.; Sun, H.; Wang, D.; Guo, H.; Sun, M.; Chen, P. Fabrication of Fe3O4@SiO2@Ag magnetic-plasmonic nanospindles as highly efficient SERS active substrates for label-free detection of pesticides. New J. Chem. 2017, 41, 1582–1590. [Google Scholar] [CrossRef]
- Hartman, T.; Wondergem, C.S.; Kumar, N.; van den Berg, A.; Weckhuysen, B.M. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis. J. Phys. Chem. Lett. 2016, 7, 1570–1584. [Google Scholar] [CrossRef] [Green Version]
- Pan, K.-Y.; Liang, Y.-F.; Pu, Y.-C.; Hsu, Y.-J.; Yeh, J.-W.; Shih, H.C. Studies on the photocatalysis of core-shelled SiO2-Ag nanospheres by controlled surface plasmon resonance under visible light. Appl. Surf. Sci. 2014, 311, 399–404. [Google Scholar] [CrossRef]
- Jue, M.; Lee, S.; Paulson, B.; Namgoong, J.M.; Yu, H.Y.; Kim, G.; Jeon, S.; Shin, D.M.; Choo, M.S.; Joo, J.; et al. Optimization of ZnO Nanorod-Based Surface Enhanced Raman Scattering Substrates for Bio-Applications. Nanomaterials 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhou, X.; Ding, T.; Zhang, J.; Wang, S.; Xu, J.; Chen, J.; Dai, J.; Chen, C. Preparation and characterization of ZnO/SiO2/Ag nanoparticles as highly sensitive substrates for surface-enhanced Raman scattering. Mater. Lett. 2016, 165, 55–58. [Google Scholar] [CrossRef]
- Kabanov, V.; Heyne, B. Impact of Incoherent Coupling within Localized Surface Plasmon Resonance on Singlet Oxygen Production in Rose Bengal-Modified Silica-Coated Silver Nanoshells (SiO2@Ag@SiO2-RB). ACS Appl. Nano Mater. 2020, 3, 8126–8137. [Google Scholar] [CrossRef]
- Yin, J.; Zang, Y.; Yue, C.; Wu, Z.; Wu, S.; Li, J.; Wu, Z. Ag nanoparticle/ZnO hollow nanosphere arrays: Large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. J. Mater. Chem. 2012, 22, 7902–7909. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Du, J.; Li, X.; Shen, Y.; Yang, M.; Han, X.; Yang, L.; Zhao, B. Comparative study of semiconductor TiO2 and noble metal Ag substrates: The differences between chemical enhancement and electromagnetic enhancement in SERS. J. Raman Spectrosc. 2018, 49, 1257–1264. [Google Scholar] [CrossRef]
- He, X.; Yue, C.; Zang, Y.; Yin, J.; Sun, S.; Li, J.; Kang, J. Multi-hot spot configuration on urchin-like Ag nanoparticle/ZnO hollow nanosphere arrays for highly sensitive SERS. J. Mater. Chem. A 2013, 1, 15010–15015. [Google Scholar] [CrossRef]
- Han, D.; Li, B.; Chen, Y.; Wu, T.; Kou, Y.; Xue, X.; Chen, L.; Liu, Y.; Duan, Q. Facile synthesis of Fe3O4@Au core-shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection. Nanotechnology 2019, 30, 465703. [Google Scholar] [CrossRef] [PubMed]
- Anju, K.S.; Gayathri, R.; Subha, P.P.; Kumar, K.R.; Jayaraj, M.K. Optimally distributed Ag over SiO2 nanoparticles as colloidal SERS substrate. Microchem. J. 2019, 147, 349–355. [Google Scholar] [CrossRef]
- Tao, F.; Hiralal, P.; Ren, L.; Wang, Y.; Dai, Q.; Amaratunga, G.A.; Zhou, H. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings. Nanoscale Res. Lett. 2014, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.K.; Sharma, S.; Dutta, S.; Zboril, R.; Gawande, M.B. Silica-nanosphere-based organic-inorganic hybrid nanomaterials: Synthesis, functionalization and applications in catalysis. Green Chem. 2015, 17, 3207–3230. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wu, H.; Zhang, J.; Tian, Q.; Yang, S. Functionalized Holmium-Doped Hollow Silica Nanospheres for Combined Sonodynamic and Hypoxia-Activated Therapy. Adv. Funct. Mater. 2019, 29, 1805764. [Google Scholar] [CrossRef]
- Kozhina, E.P.; Bedin, S.A.; Nechaeva, N.L.; Podoynitsyn, S.N.; Tarakanov, V.P.; Andreev, S.N.; Grigoriev, Y.V.; Naumov, A.V. Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates. Appl. Sci. 2021, 11, 1375. [Google Scholar] [CrossRef]
- Kozhina, E.P.; Andreev, S.N.; Tarakanov, V.P.; Bedin, S.A.; Doludenko, I.M.; Naumov, A.V. Study of Local Fields of Dendrite Nanostructures in Hot Spots Formed on SERS-Active Substrates Produced via Template-Assisted Synthesis. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1465–1468. [Google Scholar] [CrossRef]
- Wiley, B.J.; Im, S.H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 2006, 110, 15666–15675. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhou, Y.F.; Xu, J.; Liang, P.; Liu, Z.G.; Wang, J.; Zhang, D.; Dong, Q.M.; Shen, W.M.; Zhuang, S.L. Unveiling the growth mechanism of SiO2/Ag hybrid nanospheres and using for Surface Enhanced Raman Scattering detection. Appl. Surf. Sci. 2019, 463, 115–120. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Niu, C.; Wang, Y. Template-Activated Strategy toward One-Step Coating Silica Colloidal Microspheres with Silver. ACS Appl. Mater. Interfaces 2014, 6, 1272–1278. [Google Scholar] [CrossRef]
- Sonkar, P.K.; Ganesan, V. Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J. Solid State Electrochem. 2015, 19, 2107–2115. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, J.; Lee, S.S.; Ying, J.Y. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 2008, 24, 5842–5848. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L.M. Silica coating of silver nanoparticles using a modified Stober method. J. Colloid Interface Sci. 2005, 283, 392–396. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, M.; Wu, L. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 2007, 111, 11692–11698. [Google Scholar] [CrossRef]
- Rong, Z.; Xiao, R.; Wang, C.; Wang, D.; Wang, S. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. Langmuir 2015, 31, 8129–8137. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Q.; Ge, J.; Goebl, J.; Sun, M.; Yan, Y.; Liu, Y.-S.; Chang, C.; Guo, J.; Yin, Y. A Self-Templated Route to Hollow Silica Microspheres. J. Phys. Chem. C 2009, 113, 3168–3175. [Google Scholar] [CrossRef]
- Wu, M.C.; Lin, M.P.; Chen, S.W.; Lee, P.H.; Li, J.H.; Su, W.F. Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Adv. 2014, 4, 10043–10050. [Google Scholar] [CrossRef]
- Yin, W.; Wu, L.; Ding, F.; Li, Q.; Wang, P.; Li, J.; Lu, Z.; Han, H. Surface-imprinted SiO2@Ag nanoparticles for the selective detection of BPA using surface enhanced Raman scattering. Sens. Actuators B Chem. 2018, 258, 566–573. [Google Scholar] [CrossRef]
- Wu, M.-C.; Lin, M.-P.; Lin, T.-H.; Su, W.-F. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection. Jpn. J. Appl. Phys. 2018, 57, 04FM07. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Lu, J.; Xu, C.; Nan, H.; Zhu, Q.; Qin, F.; Manohari, A.G.; Wei, M.; Zhu, Z.; Shi, Z.; Ni, Z. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection. Appl. Phys. Lett. 2016, 109, 073701. [Google Scholar] [CrossRef]
- Radziuk, D.; Moehwald, H. Surpassingly Competitive Electromagnetic Field Enhancement at the Silica/Silver Interface for Selective Intracellular Surface Enhanced Raman Scattering Detection. ACS Nano 2015, 9, 2820–2835. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Rigorous justification of the E (4) enhancement factor in Surface Enhanced Raman Spectroscopy. Chem. Phys. Lett. 2006, 423, 63–66. [Google Scholar] [CrossRef]
- Han, Q.; Li, G.; Wang, D.; He, E.; Dong, J.; Gao, W.; Li, J.; Liu, T.; Zhang, Z.; Zheng, H. Synthesis of Ag-SiO2 composite nanospheres and their catalytic activity. Sci. China Chem. 2014, 57, 881–887. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, D.K.; Cha, H.G.; Kim, C.W.; Kang, Y.S. Synthesis and Characterization of Antibacterial Ag−SiO2 Nanocomposite. J. Phys. Chem. C 2007, 111, 3629–3635. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.S.; Park, H.K. Facile Method To Prepare Surface-Enhanced-Raman-Scattering-Active Ag Nanostructures on Silica Spheres. Langmuir 2006, 22, 8083–8088. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, F.; Du, D.; Liu, S.; Wang, C.; Xu, Z.; Wang, H. ZnO nanotower arrays decorated with cubic and tetrahedral shaped Ag-NPs as hybrid SERS-active substrates. Appl. Surf. Sci. 2021, 544, 148924. [Google Scholar] [CrossRef]
- Natan, M.J. Concluding Remarks: Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321–328. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Du, D.; Liu, S.; Wang, L.; Jiao, T.; Xu, Z.; Wang, H. Revealing the Hemispherical Shielding Effect of SiO2@Ag Composite Nanospheres to Improve the Surface Enhanced Raman Scattering Performance. Nanomaterials 2021, 11, 2209. https://doi.org/10.3390/nano11092209
Wang F, Du D, Liu S, Wang L, Jiao T, Xu Z, Wang H. Revealing the Hemispherical Shielding Effect of SiO2@Ag Composite Nanospheres to Improve the Surface Enhanced Raman Scattering Performance. Nanomaterials. 2021; 11(9):2209. https://doi.org/10.3390/nano11092209
Chicago/Turabian StyleWang, Fengyan, Daxue Du, Shan Liu, Linna Wang, Tifeng Jiao, Zhaopeng Xu, and Haiyan Wang. 2021. "Revealing the Hemispherical Shielding Effect of SiO2@Ag Composite Nanospheres to Improve the Surface Enhanced Raman Scattering Performance" Nanomaterials 11, no. 9: 2209. https://doi.org/10.3390/nano11092209
APA StyleWang, F., Du, D., Liu, S., Wang, L., Jiao, T., Xu, Z., & Wang, H. (2021). Revealing the Hemispherical Shielding Effect of SiO2@Ag Composite Nanospheres to Improve the Surface Enhanced Raman Scattering Performance. Nanomaterials, 11(9), 2209. https://doi.org/10.3390/nano11092209