Effect of Silver Modification on the Photoactivity of Titania Coatings with Different Pore Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Coatings
2.2. Characterization
3. Results
3.1. Characterization of TiO2 and TiO2–Ag Coatings
3.2. Adsorption and Photodegradation of Dyes in the Coatings
3.2.1. Dye Adsorption
3.2.2. Rhodamine 6G Dye Degradation at the Air–Solid Interface
3.2.3. Methylene Blue Dye Degradation at the Air–Solid Interface
3.2.4. Dye Degradation at the Liquid–Solid Interface, under UV Light
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Fujishima, A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 247–262. [Google Scholar] [CrossRef]
- Boyadjiev, S.I.; Kéri, O.; Bárdos, P.; Firkala, T.; Gáber, F.; Nagy, Z.K.; Baji, Z.; Takács, M.; Szilágyi, I.M. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 2017, 424, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.M.; Tahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; González-Elipe, A.R.; Fernandez, A. Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl. Catal. B Environ. 1997, 13, 219–228. [Google Scholar] [CrossRef]
- Shakeel Ahmad, M.; Pandey, A.K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 2017, 77, 89–108. [Google Scholar] [CrossRef]
- Banerjee, S.; Dionysiou, D.D.; Pillai, S.C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015, 176–177, 396–428. [Google Scholar] [CrossRef] [Green Version]
- Zaleska, A. Doped-TiO₂: A Review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Gamage McEvoy, J.; Zhang, Z. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C Photochem. Rev. 2014, 19, 62–75. [Google Scholar] [CrossRef]
- Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Reduction of nitroarenes into aryl amines and N-aryl hydroxylamines via activation of NaBH4 and ammonia-borane complexes by Ag/TiO2 catalyst. Nanomaterials 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Gopalan, A.I.; Lee, J.C.; Saianand, G.; Lee, K.P.; Sonar, P.; Dharmarajan, R.; Hou, Y.L.; Ann, K.Y.; Kannan, V.; Kim, W.J. Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials. Nanomaterials 2020, 10, 1854. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Wafi, A.; Szabó-Bárdos, E.; Horváth, O.; Pósfai, M.; Makó, É.; Juzsakova, T.; Fónagy, O. The photocatalytic and antibacterial performance of nitrogen-doped tio2: Surface-structure dependence and silver-deposition effect. Nanomaterials 2020, 10, 2261. [Google Scholar] [CrossRef]
- Bergamini, R.B.M.; Azevedo, E.B.; Araújo, L.R.R. de Heterogeneous photocatalytic degradation of reactive dyes in aqueous TiO2 suspensions: Decolorization kinetics. Chem. Eng. J. 2009, 149, 215–220. [Google Scholar] [CrossRef]
- Song, X.M.; Wu, J.M.; Yan, M. Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. Thin Solid Films 2009, 517, 4341–4347. [Google Scholar] [CrossRef]
- Falaras, P.; Arabatzis, I.M.; Stergiopoulos, T.; Bernard, M.C. Enhanced activity of silver modified thin-film TiO2 photocatalysts. Int. J. Photoenergy 2003, 5, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Seery, M.K.; George, R.; Floris, P.; Pillai, S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A Chem. 2007, 189, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Julson, A.J.; Ollis, D.F. Kinetics of dye decolorization in an air-solid system. Appl. Catal. B Environ. 2006, 65, 315–325. [Google Scholar] [CrossRef]
- Tegze, B.; Albert, E.; Fodor, B.; Sáfrán, G.; Hórvölgyi, Z. Photoinduced processes of adsorbed and associated dye molecules in mesoporous titania coatings. Dye. Pigment. 2019, 167, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.; Sheik, M.; O’Rourke, C.; McFarlane, M. Adsorption and photocatalysed destruction of cationic and anionic dyes on mesoporous titania films: Reactions at the air-solid interface. Appl. Catal. B Environ. 2009, 89, 189–195. [Google Scholar] [CrossRef]
- Sun, R.-D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. J. Phys. Chem. B 2002, 105, 1984–1990. [Google Scholar] [CrossRef]
- Epifani, M.; Giannini, C.; Tapfer, L.; Vasanelli, L. Sol–Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films. J. Am. Ceram. Soc. 2000, 83, 2385–2393. [Google Scholar] [CrossRef]
- Traversa, E.; Vona, M.; Nunziante, P.; Licoccia, S.; Sasaki, T.; Koshizaki, N. Sol-Gel Preparation and Characterization of Ag-TiO2 Nanocomposite Thin Films. J. Sol-Gel. Sci. Technol. 2000, 19, 733–736. [Google Scholar] [CrossRef]
- Liaqat, M.A.; Hussain, Z.; Khan, Z.; Akram, M.A.; Shuja, A. Effects of Ag doping on compact TiO2 thin films synthesized via one-step sol–gel route and deposited by spin coating technique. J. Mater. Sci. Mater. Electron. 2020, 31, 7172–7181. [Google Scholar] [CrossRef]
- Mai, L.; Wang, D.; Zhang, S.; Xie, Y.; Huang, C.; Zhang, Z. Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl. Surf. Sci. 2010, 257, 974–978. [Google Scholar] [CrossRef]
- Tegze, B.; Albert, E.; Dikó, B.; Madarász, J.; Sáfrán, G.; Hórvölgyi, Z. Thin layer photocatalysts of TiO2-Ag composites. Stud. Univ. Babes-Bolyai. Chem. 2019, 64, 81–98. [Google Scholar] [CrossRef]
- Ka̧dzioła, K.; Piwoński, I.; Kisielewska, A.; Szczukocki, D.; Krawczyk, B.; Sielski, J. The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods-Comparative studies. Appl. Surf. Sci. 2014, 288, 503–512. [Google Scholar] [CrossRef]
- Arabatzis, I.M.; Stergiopoulos, T.; Bernard, M.C.; Labou, D.; Neophytides, S.G.; Falaras, P. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B Environ. 2003, 42, 187–201. [Google Scholar] [CrossRef]
- Zielińska, A.; Kowalska, E.; Sobczak, J.W.; Łacka, I.; Gazda, M.; Ohtani, B.; Hupka, J.; Zaleska, A. Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep. Purif. Technol. 2010, 72, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, K.; Suzuki, K.; Ohko, Y.; Tatsuma, T. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Phys. Chem. Chem. Phys. 2005, 7, 3851–3855. [Google Scholar] [CrossRef]
- Novotna, P.; Krysa, J.; Maixner, J.; Kluson, P.; Novak, P. Photocatalytic activity of sol-gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surf. Coat. Technol. 2010, 204, 2570–2575. [Google Scholar] [CrossRef]
- Albert, E.; Albouy, P.A.; Ayral, A.; Basa, P.; Csík, G.; Nagy, N.; Roualdès, S.; Rouessac, V.; Sáfrán, G.; Suhajda, Á.; et al. Antibacterial properties of Ag–TiO2 composite sol–gel coatings. RSC Adv. 2015, 5, 59070–59081. [Google Scholar] [CrossRef] [Green Version]
- Hild, E.; Deák, A.; Naszályi, L.; Sepsi, Ö.; Ábrahám, N.; Hórvölgyi, Z. Use of the optical admittance function and its WKB approximation to simulate and evaluate transmittance spectra of graded-index colloidal films. J. Opt. A Pure Appl. Opt. 2007, 9, 920–930. [Google Scholar] [CrossRef]
- Heller, W. Remarks on refractive index mixture rules. J. Phys. Chem. 1965, 69, 1123–1129. [Google Scholar] [CrossRef]
- Crist, B.V. Handbook of Monochromatic XPS Spectra; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Wolfram, E.; Faust, R. Liquid drops on a titled plate, contact angle hysteresis and the Young contact angle. In Wetting Spreading Adhes; Padday, J.F., Ed.; Academic Press: London, UK, 1978; pp. 213–222. [Google Scholar]
- Rodríguez-de Marcos, L.V.; Larruquert, J.I.; Méndez, J.A.; Aznárez, J.A. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 2016, 6, 3622. [Google Scholar] [CrossRef]
- Terdale, S.; Tantray, A. Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. J. Mol. Liq. 2017, 225, 662–671. [Google Scholar] [CrossRef]
- Cenens, J.; Schoonheydt, R.A. Visible Spectroscopy of Methylene Blue on Hectorite, Laponite B, and Barasym in Aqueous Suspension. Clays Clay Miner. 1988, 36, 214–224. [Google Scholar] [CrossRef]
n | d (nm) | P (%) | dpore (nm) | |
---|---|---|---|---|
SiO2 | 1.454 ± 0.007 | 196 ± 10 | - | - |
c-TiO2 | 1.860 ± 0.052 | 54 ± 4 | 27 ± 3 | 5.0 |
p-TiO2 | 1.540 ± 0.040 | 88 ± 6 | 49 ± 3 | 9.0 |
Expected Ag wt % | RBS Ag wt % | XPS Ag wt % Surface | XPS Ag wt % Bulk | |
---|---|---|---|---|
p-TiO2(0.03Ag) | 0.08 | 0.67 | 0.7 | 0.6 |
p-TiO2(1Ag) | 2.67 | 1.99 | 1.7 | 1.6 |
p-TiO2–Ag | 11.80 | 6.91 | 7.4 | 7.5 |
c-TiO2(0.03Ag) | 0.03 | 1.07 | 1.2 | 0.5 |
c-TiO2(1Ag) | 1.04 | 2.37 | 4.3 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tegze, B.; Albert, E.; Dikó, B.; Nagy, N.; Rácz, A.; Sáfrán, G.; Sulyok, A.; Hórvölgyi, Z. Effect of Silver Modification on the Photoactivity of Titania Coatings with Different Pore Structures. Nanomaterials 2021, 11, 2240. https://doi.org/10.3390/nano11092240
Tegze B, Albert E, Dikó B, Nagy N, Rácz A, Sáfrán G, Sulyok A, Hórvölgyi Z. Effect of Silver Modification on the Photoactivity of Titania Coatings with Different Pore Structures. Nanomaterials. 2021; 11(9):2240. https://doi.org/10.3390/nano11092240
Chicago/Turabian StyleTegze, Borbála, Emőke Albert, Boglárka Dikó, Norbert Nagy, Adél Rácz, György Sáfrán, Attila Sulyok, and Zoltán Hórvölgyi. 2021. "Effect of Silver Modification on the Photoactivity of Titania Coatings with Different Pore Structures" Nanomaterials 11, no. 9: 2240. https://doi.org/10.3390/nano11092240
APA StyleTegze, B., Albert, E., Dikó, B., Nagy, N., Rácz, A., Sáfrán, G., Sulyok, A., & Hórvölgyi, Z. (2021). Effect of Silver Modification on the Photoactivity of Titania Coatings with Different Pore Structures. Nanomaterials, 11(9), 2240. https://doi.org/10.3390/nano11092240