Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications
Abstract
:1. Introduction
2. Theoretical Considerations
3. Some Experimental Results
4. Toxicological Aspects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cassidi, J.; Bissett, D.; Spence, R.A.J.; Payne, M.; Morris-Stiff, G. (Eds.) Oxford Handbook of Oncology, 4th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the Microscope. Mol. Pharm. 2011, 8, 2101–2141. [Google Scholar] [CrossRef] [PubMed]
- Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine 2012, 7, 1253–1271. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012, 64, 1363–1384. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Quarta, A.; Piccirillo, C.; Mandriota, G.; di Corato, R. Nanoheterostructures (NHS) and their applications in nanomedicine: Focusing on in vivo studies. Materials 2019, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Racca, L.; Cauda, V. Remotely activated nanoparticles for anticancer therapy (review). Nano Micro Lett. 2020, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 2010, 46, 2523–2558. [Google Scholar] [CrossRef] [Green Version]
- Thang, N.T.K. (Ed.) Magnetic Nanoparticles. From Fabrication to Clinical Applications; CRC Press: Boca Raton, FL, USA, 2012; 616p. [Google Scholar]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Kumar, C.S.S. (Ed.) Magnetic Nanomaterials; Wiley VCH: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 2014, 4, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Bañobre-López, M.; Piñeiro, Y.; López-Quintela, M.A.; Rivas, J. Magnetic nanoparticles for biomedical applications. In Handbook of Nanomaterials Properties; Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 457–493. [Google Scholar]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef] [PubMed]
- Schleich, N.; Danhier, F.; Preat, V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J. Control. Release 2014, 198, 35–54. [Google Scholar] [CrossRef]
- Majouga, A.; Kuznetsov, A.; Lebedev, D.; Efremova, M.; Beloglazkina, E.; Rudakovskaya, P.; Veselov, M.; Zyk, N.; Golovin, Y.; Klyachko, N.; et al. Enzyme-functionalized gold-coated magnetic nanoparticles as novel hybrid nanomaterials: Synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf. B Biointerfaces 2015, 125, 104–109. [Google Scholar] [CrossRef]
- Efremova, M.V.; Garanina, A.S.; Blokhina, A.D.; Golovin, Y.I.; Klyachko, N.L.; Majouga, A.G.; Naumenko, V.A.; Abakumov, M.A.; Li, Z.A.; Ma, Z.; et al. Magnetite-gold nanohybrids as ideal all-in-one platform for theranostics. Sci. Rep. 2018, 8, 11295. [Google Scholar] [CrossRef] [Green Version]
- Ajinkya, N.; Yu, X.; Kaithal, P.; Luo, H.; Somani, P.; Ramakrishna, S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials 2020, 13, 4644. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.-P. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology 2019, 30, 502003. [Google Scholar] [CrossRef] [Green Version]
- Popescu, R.C.; Andronescu, E.; Vasile, B.S. Recent advances in magnetite nanoparticles functionalization for nanomedicine. Nanomaterials 2019, 9, 1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- N’Guyen, T.T.T.; Duong, H.T.T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M.R.; Davis, T.P.; et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. 2013, 52, 14152–14156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutz, S.; Hergt, R. Magnetic particle hyperthermia—A promising tumour therapy. Nanotechnology 2014, 25, 452001. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Andujar, C.; Teran, F.J.; Ortega, D. Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia Ch. 8. In Iron Oxide Nanoparticles for Biomedical Applications; Mahmoudi, M., Laurent, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 197–245. [Google Scholar]
- Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically targeted magnetic hyperthermia: Potential and limitations. Front. Pharmacol. 2018, 9, 831. [Google Scholar] [CrossRef] [Green Version]
- Armenia, I.; Bonavia, M.V.G.; De Matteis, L.; Ivanchenko, P.; Martra, G.; Gornati, R.; de la Fuente, J.M.; Bernardini, G. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology. J. Colloid Interface Sci. 2019, 537, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Raouf, I.; Khalid, S.; Khan, A.; Lee, J.; Kim, H.S.; Kim, M.-H. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J. Therm. Biol. 2020, 91, 102644. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- Caizer, C. Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials 2021, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Charinpanitkul, T.; Kim, K.-S. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Muñoz, M.; Plesselova, S.; Delgado, A.V.; Santoyo-Gonzalez, F.; Salto-Gonzalez, R.; Giron-Gonzalez, M.D.; Iglesias, G.R.; López-Jaramillo, F.J. Poly(ethylene-imine)-functionalized magnetite nanoparticles derivatized with folic acid: Heating and targeting properties. Polymers 2021, 13, 1599. [Google Scholar] [CrossRef]
- Périgo, E.A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F.J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302. [Google Scholar] [CrossRef] [Green Version]
- Hervault, A.; Thanh, N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 2014, 4, 834–843. [Google Scholar] [CrossRef]
- Mannix, R.J.; Kumar, S.; Cassiola, F.; Montoya-Zavala, M.; Feinstein, E.; Prentiss, M.; Ingber, D.E. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 2008, 3, 36–40. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Thanh, N.T.K.; Jones, K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224001. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Vitol, E.A.; Liu, J.; Balasubramanian, S.; Gosztola, D.J.; Cohen, E.E.; Novosad, V.; Rozhkova, E.A. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 2013, 29, 7425–7432. [Google Scholar] [CrossRef] [PubMed]
- Torres-Lugo, L.; Rinaldi, C. Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine 2013, 8, 1689–1707. [Google Scholar] [CrossRef] [Green Version]
- Alumutairi, L.; Yu, B.; Filka, M.; Nayfach, J.; Kim, M.-H. Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics. Int. J. Hyperth. 2020, 37, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, J.P. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; McBain, S.; Dobson, J.P.; el Haj, A.J. Selective activation of mechanosensitive ion channels using magnetic particles. J. Royal. Soc. Interface 2008, 5, 855–863. [Google Scholar] [CrossRef]
- Kim, D.H.; Rozhkova, E.A.; Ulasov, I.V.; Bader, S.D.; Rajh, T.; Lesniak, M.S.; Novosad, V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010, 9, 165–171. [Google Scholar] [CrossRef]
- Nappini, S.; Bombelli, F.B.; Bonini, M.; Norden, B.; Baglioni, P. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 2010, 6, 154–162. [Google Scholar] [CrossRef]
- Klyachko, N.L.; Sokolsky-Papkov, M.; Pothayee, N.; Efremova, M.V.; Gulin, D.A.; Pothayee, N.; Kuznetsov, A.A.; Majouga, A.G.; Riffle, J.S.; Golovin, Y.I.; et al. Changing the enzyme reaction rate in magnetic nanosuspensions by a nonheating magnetic field. Angew. Chemie. Int. Ed. 2012, 51, 12016–12019. [Google Scholar] [CrossRef] [Green Version]
- Golovin, Y.I.; Klyachko, N.L.; Golovin, D.Y.; Efremova, M.V.; Samodurov, A.A.; Sokolski-Papkov, M.; Kabanov, A.V. A new approach to the control of biochemical reactions in a magnetic nanosuspension using low-frequency magnetic field. Tech. Phys. Lett. 2013, 39, 240–243. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Klyachko, N.L.; Kabanov, A.V.; Sokolski-Papkov, M. Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low-frequency magnetic fields. Bull. Russ. Acad. Sci. Phys. 2013, 77, 1350–1359. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Gribanovskii, S.L.; Golovin, D.Y.; Klyachko, N.L.; Kabanov, A.V. Single-domain magnetic nanoparticles in alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys. Solid State 2014, 56, 1342–1351. [Google Scholar] [CrossRef]
- Hu, B.; Dobson, J.; El Haj, A.J. Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Naud, C.; Thebault, C.; Carriere, M.; Hou, Y.; Morel, R.; Berger, F.; Dieny, B.; Joisten, H. Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Adv. 2020, 2, 3632–3655. [Google Scholar] [CrossRef]
- Santos, L.J.; Reis, R.L.; Gomes, M.E. Harnessing magnetic mechano-actuation in regenerative medicine and tissue engineering. Rev. Trends Biotechnol. 2015, 33, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Golovin, Y.I.; Gribanovsky, S.L.; Golovin, D.Y.; Klyachko, N.L.; Majouga, A.G.; Master, А.M.; Sokolsky, M.; Kabanov, A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J. Control. Release 2015, 219, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Master, A.M.; Williams, P.M.; Pothayee, N.; Pothayee, N.; Zhang, R.; Vishwasrao, H.M.; Golovin, Y.I.; Riffle, J.S.; Sokolsky, M.; Kabanov, A.V. Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption. Sci. Rep. 2016, 6, 33560. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Klyachko, N.L.; Majouga, A.G.; Sokolsky, M.; Kabanov, A.V. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new generation nanomedicine. J. Nanopart. Res. 2017, 19, 63. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Klyachko, N.L.; Majouga, A.G.; Efremova, M.V.; Veselov, M.M.; Vlasova, K.Y.; Usvaliev, A.D.; Le-Deygen, I.M.; Kabanov, A.V.; Gribanovskii, S.L.; et al. New approaches to nanoteranostics: Polyfunctional magnetic nanoparticles activated by non-heating low-frequency magnetic field control boichemical systems with molecular locality and selectivity. Nanotechnol. Russ. 2018, 13, 215–239. [Google Scholar] [CrossRef]
- Efremova, M.V.; Veselov, M.M.; Barulin, A.V.; Gribanovsky, S.L.; Le-Deygen, I.M.; Uporov, I.V.; Kudryashova, E.V.; Sokolsky-Papkov, M.; Majouga, A.G.; Golovin, Y.I.; et al. In situ observation of chymotrypsin catalytic activity change actuated by nonheating low-frequency magnetic field. ACS Nano 2018, 12, 3190–3199. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Zhigachev, A.O.; Golovin, D.Y.; Gribanovsky, S.L.; Kabanov, A.V.; Klyachko, N.L. Straintronics for nanomedicine: Manipulating biochemical systems via controllable macromolecular nanodeformation. Bull. Russ. Acad. Sci. Phys. 2020, 84, 815–819. [Google Scholar] [CrossRef]
- Mammoto, T.; Ingber, D.E. Mechanical control of tissue and organ development. Development 2010, 137, 1407–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, V.; Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006, 7, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3, 413–438. [Google Scholar] [CrossRef] [PubMed]
- Belaadi, N.; Aureille, J.; Guilluy, C. Under pressure: Mechanical stress management in the nucleus. Cells 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Hansel, S.; Crowder, S.W.; Cooper, S.; Gopal, S.; da Cruz, M.J.P.; de Oliveira Martins, L.; Keller, D.S.; Rothery, M.; Becce, A.E.G.; Cass, C.; et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13, 2913–2926. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Nguyen, H.T. Molecular mechanism of apoptosis induced by mechanical forces. Int. Rev. Cytol. 2005, 245, 45–90. [Google Scholar] [PubMed]
- Chan, D.D.; Van Dyke, W.S.; Bahls, M.; Connell, S.D.; Critser, P.; Kelleher, J.E.; Kramer, M.A.; Pearce, S.M.; Sharma, S.; Neu, C.P. Mechanostasis in apoptosis and medicine. Prog. Biophys. Mol. Biol. 2011, 106, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, Z.E.; Cirka, H.A.; Billiar, K.L. Mechanical regulation of apoptosis in the cardiovascular system. Ann. Biomed. Eng. 2021, 49, 75–97. [Google Scholar] [CrossRef]
- Huang, H.; Kamm, R.D.; Lee, R.T. Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 2004, 287, C1–C11. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Chen, C.S. Mechanotransduction in development: A growing role for contractility. Nat. Rev. Mol. Cell Biol. 2009, 10, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular mechanotransduction: From tension to function. Front. Physiol. 2018, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, H.; Yang, B.; Sheetz, M.P. Steps in mechanotransduction pathways that control cell morphology. Annu. Rev. Physiol. 2019, 81, 585–605. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.; Ning, P.; Wang, J.; Ma, Z.; Huang, L.; Plaza, G.R.; Shen, Y.; Xu, C.; Han, Y.; et al. Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment. Small 2020, 16, e1905424. [Google Scholar] [CrossRef]
- Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Chalfie, M. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 2009, 10, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Gahl, T.J.; Kunze, A. Force-mediating MNPs to engineer neuronal cell function. Front. Neurosci. 2018, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Roet, M.; Hescham, S.-A.; Jahanshahi, A.; Rutten, B.P.F.; Anikeeva, P.O.; Temel, Y. Progress in neuromodulation of the brain: A role for magnetic nanoparticles? Prog. Neurobiol. 2019, 177, 1–14. [Google Scholar] [CrossRef]
- Broders-Bondon, F.; Ho-Bouldoires, T.H.N.; Fernandez-Sanchez, M.-E.; Farge, E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018, 217, 1571–1587. [Google Scholar] [CrossRef] [Green Version]
- Stavroulakis, P. (Ed.) Biological Effects of Electromagnetic Fields; Springer: Berlin, Germany, 2003. [Google Scholar]
- Rosch, P.J.; Markov, M. Bioelectromagnetic Medicine; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Greenebaum, B.; Barnes, B. (Eds.) Handbook of Biological Effects of Electromagnetic Fields. Biological and Medical Aspects of Electromagnetic Fields, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Funk, R.H.; Monsees, T.; Ozkucur, N. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Staebler, P. Human Exposure to Electromagnetic Fields: From Extremely Low Frequency (ELF) to Radiofrequency; John Wiley & Sons Inc.: London, UK; Hoboken, NJ, USA, 2017. [Google Scholar]
- Buchachenko, A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Hore, P.J. Are biochemical reactions affected by weak magnetic fields? Proc. Nat. Acad. Sci. USA 2012, 109, 1357–1358. [Google Scholar] [CrossRef] [Green Version]
- Zaporozhan, V.; Ponomarenko, A. Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: Basics of physical epidemiology. Int. J. Environ. Res. Public Health 2010, 7, 938–965. [Google Scholar] [CrossRef] [Green Version]
- Ptitsyna, N.G.; Villoresi, G.; Dorman, L.I.; Iucci, N.; Tyasto, M.I. Natural and man-made low-frequency magnetic fields as a potential health hazard. Phys. Usp. 1998, 41, 687–709. [Google Scholar] [CrossRef] [Green Version]
- Human Exposure to Radiofrequency Electromagnetic Fields and Reassessment of FCC Radiofrequency Exposure Limits to and Policies. A Rule by the Federal Communications Commission on 04/01/2020. Federal Register. Document 85 FR 18131. The Daily Journal of the United States Government. 06/01/2020. pp. 18131–18151. Available online: https://www.federalregister.gov/documents/2020/04/01/2020-02745 (accessed on 30 July 2021).
- Environmental and Workplace Health. Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz. Consumer and Clinical Radiation Protection Bureau Environmental and Radiation Health Sciences Directorate Healthy Environments and Consumer Safety Branch Health Canada. Safety Code 6. 2015. Available online: https://www.canada.ca/en/health-canada/services/publications/health-risks-safety/limits-human-exposure-radiofrequency-electromagnetic-energy-range-3-300.html (accessed on 30 July 2021).
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to timevarying electric, magnetic, and electromagnetic fields. (Up to 300 GHz). Health Phys. 1998, 74, 494–522. Available online: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf (accessed on 30 July 2021).
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz–100 kHz). Health Phys. 2010, 99, 818–836. Available online: https://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf (accessed on 30 July 2021). [CrossRef] [PubMed]
- Formica, D.; Silvestri, S. Biological effects of exposure to magnetic resonance imaging: An overview. BioMed. Eng. 2004, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, W.J.; Brezovich, I.A.; Chakraborty, D.P. Usable Frequencies in Hyperthermia with Thermal Seeds. IEEE Trans. Biomed. Eng. 1984, BME-31, 70–75. [Google Scholar] [CrossRef]
- Binhi, N.; Prato, F.S. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE 2017, 12, e0179340. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Buchachenko, A.L.; Frankevich, E.L. Magnetic-spin effects in chemistry and molecular physics. Sov. Phys. Usp. 1988, 1, 385–408. [Google Scholar] [CrossRef]
- Grissom, C.B. Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 1995, 95, 3–24. [Google Scholar] [CrossRef]
- Brocklehurst, B.; McLauchlan, K.A. Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Radiat. Biol. 1996, 69, 3–24. [Google Scholar] [CrossRef]
- Binhi, V.N. Magnetobiology: Underlying Physical Problems; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Binhi, V.N.; Savin, A.V. Effects of weak magnetic fields on biological systems: Physical aspects. Phys. Usp. 2003, 46, 259–291. [Google Scholar]
- Buchachenko, A.L. Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russ. Chem. Rev. 2014, 83, 1–12. [Google Scholar] [CrossRef]
- Buchachenko, A.L. Magneto-Biology and Medicine; Nova Science Publishers: Hauppauge, NY, USA, 2015. [Google Scholar]
- Buchachenko, A.; Lawler, R.G. New possibilities for magnetic control of chemical reactions. Acc. Chem. Res. 2017, 50, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.T.; Hines, J.R.; Gordon, D. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med. Hypotheses 1979, 5, 83–102. [Google Scholar] [CrossRef]
- Ito, A.; Honda, H.; Kobayashi, T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: A novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immunother. 2006, 5, 320–328. [Google Scholar] [CrossRef]
- Amstad, E.; Kohlbrecher, J.; Muller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011, 11, 1664–1670. [Google Scholar] [CrossRef]
- Hergt, R.; Andra, W.; d’Ambly, C.G.; Hilger, I.; Kaiser, W.A.; Richter, U.; Schmidt, H.G. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 1998, 4, 3745–3754. [Google Scholar] [CrossRef]
- Andra, W.; d’Ambly, C.G.; Hergt, R.; Hilger, I.; Kaiser, W.A. Temperature distribution as function of timearound a small spherical heat source of localmagnetic hyperthermia. J. Magn. Magn. Mater. 1999, 194, 197–203. [Google Scholar] [CrossRef]
- Rabin, Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int. J. Hyperth. 2002, 18, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Keblinski, P.; Cahill, D.G.; Bodapati, A.; Sullivan, C.R.; Taton, T.A. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 2006, 100, 054305. [Google Scholar] [CrossRef]
- Giordano, M.A.; Gutierrez, G.; Rinaldi, C. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int. J. Hyperth. 2010, 26, 475–484. [Google Scholar] [CrossRef]
- Gupta, A.; Kane, R.S.; Borca-Tasciuc, D.-A. Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. J. Appl. Phys. 2010, 108, 064901. [Google Scholar] [CrossRef]
- Crick, F.H.C.; Hughes, A.F.W. The physical properties of cytoplasm: A study by means of the magnetic particle method. Exp. Cell Res. 1950, 1, 37–80. [Google Scholar] [CrossRef]
- Klibanov, A.M.; Samokhin, G.P.; Martinek, K.; Berezin, I.V. Enzymatic mechanochemistry: A new approach to studying themechanism of enzyme action. Biochim. Biophys. Acta 1976, 438, 1–12. [Google Scholar] [CrossRef]
- Rios, C.; Longo, J.; Zahouani, S.; Garnier, T.; Vogt, C.; Reisch, A.; Senger, B.; Boulmedais, F.; Hemmerlé, J.; Benmlih, K.; et al. A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chem. Commun. 2015, 51, 5622–5625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Bai, Y.; Zhou, H.; Yang, L. Mechano-active biomaterials for tissue repair and regeneration. J. Mater. Sci. Technol. 2020, 59, 227–233. [Google Scholar] [CrossRef]
- Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field. J. Nanoparticle Res. 2017, 19, 64. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Zhigachev, A.O.; Efremova, M.V.; Majouga, A.G.; Kabanov, A.V.; Klyachko, N.L. Ways and methods for controlling biomolecular structures using magnetic nanoparticles activated by an alternating magnetic field. Nanotechnol. Russ. 2018, 13, 295–304. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Klyachko, N.L.; Gribanovskii, S.L.; Golovin, D.Y.; Samodurov, A.A.; Majouga, A.G.; Sokolsky-Papkov, M.; Kabanov, A.V. Nanomechanical control of properties of biological membranes achieved by rodlike magnetic nanoparticles in a superlow-frequency magnetic field. Tech. Phys. Lett. 2015, 41, 455–457. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, C.; Uyeda, T.Q.P.; Plaza, G.R.; Liu, B.; Han, Y.; Lesniak, M.S.; Cheng, Y. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics 2017, 7, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Le-Deygen, I.M.; Vlasova, K.Y.; Kutsenok, E.O.; Usvaliev, A.D.; Efremova, M.V.; Rudakovskaya, P.G.; Kudryashova, E.V.; Golovin, Y.I.; Kabanov, A.V.; Klyachko, N.L.; et al. Magnetic nanorods for remote disruption of lipid membranes by non-heating low frequence magnetic field. Nanomed. Nanotechnol. Biol. Med. 2019, 21, 102065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Hao, N.; Zhang, J.X.J.; Hoopes, P.J.; Shubitidze, F.; Chen, Z. Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy. J. Nanobiotechnol. 2021, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, A.; Chemla, Y.R.; Forde, N.R.; Izhaky, D. Mechanical processes in biochemistry. Ann. Rev. Biochem. 2004, 73, 705–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagida, T.; Ishii, Y. (Eds.) Single Molecule Dynamics in Life Science; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Lee, A.K.; Wang, Y.M.; Huang, L.S.; Lin, S. Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 2007, 38, 446–461. [Google Scholar] [CrossRef]
- Ikai, A. The World of Nano-Biomechanics. Mechanical Imaging and Measurement by Atomic Force Microscopy; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Noy, A. Handbook of Molecular Force Spectroscopy; Springer: New York, NY, USA, 2008. [Google Scholar]
- Bukharaev, A.A.; Zvezdin, A.K.; Pyatakov, A.P.; Fetisov, Y.K. Straintronics: A new trend in micro- and nanoelectronics and material science. Phys. Usp. 2018, 61, 1175–1212. [Google Scholar] [CrossRef]
- Banchelli, M.; Nappini, S.; Montis, C.; Bonini, M.; Canton, P.; Bertia, D.; Baglioni, P. Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 2014, 16, 10023–10031. [Google Scholar] [CrossRef]
- Wang, B.; Bienvenu, C.; Mendez-Garza, J.; Madeira, P.A.; Vierling, P.; Di Giorgio, C. Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J. Magn. Magn. Mater. 2013, 344, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Leulmi, S.; Chauchet, X.; Morcrette, M.; Ortiz, G.; Joisten, H.; Sabon, P.; Livache, T.; Hou, Y.; Carriere, M.; Lequiena, S.; et al. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 2015, 7, 15904–15914. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, K.Y.; Piroyan, A.; Le-Deygen, I.M.; Vishwasrao, H.M.; Ramsey, J.D.; Natalia, L.; Klyachko, N.L.; Golovin, Y.I.; Rudakovskaya, P.G.; Kireev, I.I.; et al. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid Interface Sci. 2019, 552, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Golovin, Y.I.; Klyachko, N.L.; Gribanovskii, S.L.; Golovin, D.Yu.; Majouga, A.G. Model of controlled drug release from functionalized magnetic nanoparticles by a nonheating alternating-current magnetic field. Tech. Phys. Lett. 2016, 42, 267–270. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Gribanovskii, S.L.; Klyachko, N.L.; Kabanov, A.V. Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles. Tech. Phys. 2014, 59, 932–935. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Gribanovsky, S.L.; Golovin, D.Y.; Zhigachev, A.O.; Klyachko, N.L.; Majouga, A.G.; Sokolsky, M.; Kabanov, A.V. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: Theoretical study. J. Nanopart. Res. 2017, 19, 59. [Google Scholar] [CrossRef]
- Xie, J.; Chen, L.; Varadan, V.K.; Yancey, J.; Srivatsan, M. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology 2008, 19, 105101. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-K.; Lee, D.H.; Seo, Y.-K.; Jung, H.; Park, J.-K.; Cho, H. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Appl. Biochem. Biotechnol. 2014, 174, 1233–1245. [Google Scholar] [CrossRef]
- Tay, A.K.P. Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tay, A.; Di Carlo, D. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett. 2017, 17, 886–892. [Google Scholar] [CrossRef]
- Falconieri, A.; de Vincentiis, S.; Raffa, V. Recent advances in the use of magnetic nanoparticles to promote neuroregeneration. Nanomedicine 2019, 14, 1073–1076. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Y.; Qin, Y.-X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1337–1347. [Google Scholar] [CrossRef]
- Sengupta, S.; Balla, V.K. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J. Adv. Res. 2018, 14, 97–111. [Google Scholar] [CrossRef]
- Xu, A.; Wang, Q.; Lv, X.; Lin, T. Progressive study on the non-thermal effects of magnetic field therapy in oncology. Front. Oncol. 2021, 11, 638146. [Google Scholar] [CrossRef]
- Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells. Nanotechnology 2018, 29, 175101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.-Q.; Wang, C.; Lu, D.-F.; Zhao, X.-D.; Tan, L.-H.; Chen, X. Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging 2020, 12, 3662–3677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Li, X.; Wang, L.; Yin, M.; Wang, L.; Chen, N.; Fan, C.; Song, H. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv. Mater. 2016, 28, 1387–1393. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Hu, Y.; Shen, M.; Shi, X.; Zhang, G. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J. Ovarian Res. 2016, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riasat, R.; Nie, G. Synthesis and characterization of nontoxic hollow iron oxide (a-Fe2O3) nanoparticles using a simple hydrothermal strategy. J. Nanomater. 2016, 2016, 1920475. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Ling-Ling, J.; Yun, Z.; Gang, L. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine. Chin. Phys. B 2013, 22, 127503. [Google Scholar] [CrossRef]
- Naqvi, S.; Samim, M.; Abdin, M.A.F.; Maitra, A.; Prashant, C.; Dinda, A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed. 2010, 16, 983–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, V.; Bossolasco, P.; Moscatelli, D.; Silani, V.; Cova, L. Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations. PLoS ONE 2013, 8, e78435. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Saha, K.; Kim, C.; Rotello, V.M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013, 46, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ding, T.; Sun, J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 2013, 34, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Caro, B.; Egea-Benavente, D.; Polvillo, R.; Royo, J.L.; Leal, M.P.; García-Martín, M.L. Comprehensive toxicity assessment of pegylated magnetic nanoparticles for in vivo applications. Colloids Surf. B Biointerfaces 2019, 177, 253–259. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A Review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.-S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.-R.; Hsiao, C.-D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef] [PubMed]
- Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017, 18, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Shan, K.; Liu, J.J.; Rajendran, S.; Pugazhendhi, A.; Jacob, J.A.; Chen, B. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci. 2019, 220, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, M.A.; Semkina, A.S.; Skorikov, A.S.; Vishnevskiy, D.A.; Ivanova, A.V.; Mironova, E.; Davydova, G.A.; Majouga, A.G.; Chekhonin, V.P. Toxicity of iron oxide nanoparticles: Size and coating effects. J. Biochem. Mol. Toxicol. 2018, 32, e22225. [Google Scholar] [CrossRef] [PubMed]
- Chrishtop, V.V.; Mironov, V.A.; Prilepskii, A.Y.; Nikonorova, V.G.; Vinogradov, V.V. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2021, 15, 167–204. [Google Scholar] [CrossRef]
- Singha, N.; Gareth, J.S.; Asadib, R.; Doak, S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358. [Google Scholar] [CrossRef] [Green Version]
- Vallabani, N.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Efremova, M.V.; Spasova, M.; Heidelmann, M.; Grebennikov, I.S.; Li, Z.-A.; Garanina, A.S.; Tcareva, I.O.; Savchenko, A.G.; Farle, M.; Klyachko, N.L.; et al. Room temperature synthesized solid solution AuFe nanoparticles and their transformation into Au/Fe Janus nanocrystals. Nanoscale 2021, 13, 10402–10413. [Google Scholar] [CrossRef]
- Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Carregal-Romero, S.; Caballero-Díaz, E.; Beqa, L.; Abdelmonem, A.M.; Ochs, M.; Hühn, D.; Suau, B.S.; Valcarcel, M.; Parak, W.J. Multiplexed sensing and imaging with colloidal nano-and microparticles. Annu. Rev. Anal. Chem. 2013, 6, 53–81. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutiérrez, L.; Morales, M.P.; Böhm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306–4334. [Google Scholar] [CrossRef]
- Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009, 61, 467–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553–1561. [Google Scholar] [CrossRef]
- Hafeli, U.O.; Rifle, J.S.; Harris-Shekhawat, L.; Carmichael-Baranauskas, A.; Mark, F.; Dailey, J.P.; Bardenstein, D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009, 6, 1417–1428. [Google Scholar] [CrossRef]
- Liu, J.; Su, D.; Wu, K.; Wang, J.-P. High-moment magnetic nanoparticles. J. Nanopart. Res. 2020, 22, 66. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Zhigachev, A.O.; Klyachko, N.L.; Kabanov, A.V. Localizing the nanodeformation impact of magnetic nanoparticles on macromolecular objects by physical and biochemical means. Bull. Russ. Acad. Sci. Phys. 2018, 82, 1073–1078. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1114–1217. [Google Scholar] [CrossRef] [PubMed]
- Buzug, T.M.; Borgert, J. (Eds.) Magnetic Particle Imaging. A Novel SPIO Nanoparticle Imaging Technique; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012. [Google Scholar]
- Knopp, T.; Buzug, T.M. Magnetic Particle Imaging. An Introduction to Imaging Principles and Scanner Instrumentation; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012. [Google Scholar]
- Goodwill, P.W.; Saritas, E.U.; Croft, L.R.; Kim, T.N.; Krishnan, K.M.; Schaffer, D.V.; Conolly, S.M. X-space MPI: Magnetic nanoparticles for safe medical imaging. Adv. Mater. 2012, 24, 3870–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotopoulos, N.; Duschka, R.L.; Ahlborg, M.; Bringout, G.; Debbeler, C.; Graeser, M.; Kaethner, C.; Lüdtke-Buzug, K.; Medimagh, H.; Stelzner, J.; et al. Magnetic particle imaging: Current developments and future directions. Int. J. Nanomed. 2015, 10, 3097–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, L.; Shi, Y.; Liang, J.; Liu, C.; Xu, G. A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment. IEEE Trans. Appl. Supercond. 2013, 23, 4400104. [Google Scholar] [CrossRef]
No | Process | Evaluation of Necessary Magnetic-Field Induction B, mT | Typical Experimental Threshold Force Measured by SMFS Methods, F, pN | Reference on Experimental Measurement of Force | |
---|---|---|---|---|---|
Rm = 10 nm | Rm = 15 nm | ||||
1. | Activation of various ionic channels | 1.35–67.5 | 0.6–30 | 0.2–10 | [49,119,120] |
2. | Protein–protein interaction | 6.75–67.5 | 3–30 | 1–10 | [60,121] |
3. | Activation of membrane receptors | 67.5–337.5 | 30–150 | 10–50 | [36,49,119,120] |
4. | Bond cleavage between transmembrane protein and membrane | 202.5–337.5 | 90–150 | 30–50 | [120,121] |
5. | Antigen–antibody interaction | 67.5–675 | 30–300 | 10–100 | [60,122] |
6. | Onset of unfolding of protein macromolecule | 135–675 | 60–300 | 20–100 | [60,123] |
7. | Interaction of ligand with receptor | 6750 | 3000 | ~1000 | [120,122] |
8. | Interaction of protein with lipid | 337.5–675 | 150–300 | 50–100 | [121,122] |
9. | Breaking of covalent bond | 6750–33,750 | 3000–15,000 | 1000–5000 | [60,120] |
Method | Advantages | Drawbacks | Typical MF Parameters |
---|---|---|---|
Magnetic hyperthermia | Versatility, ease of implementation | Need to introduce MNPs, difficulty in controlling temperature and dosage, low locality, non-specificity, risk of damage to healthy tissues | f = 100–800 kHz B = 5–30 mT |
UHF physiotherapy | Ease of implementation, noninvasiveness | Unsafe field frequencies, non-specificity | f = 26–40 MHz B < 0.1 mT |
Transcranial magnetic stimulation | Noninvasiveness | Non-specificity, insufficient localization | f = 1–10 kHz B = 1–3 T |
Nano-magnetomechanical actuation | Molecular locality, high specificity, safe frequencies, multimodality | Need to introduce MNPs | f < 1 kHz B = 10–500 mT |
Spin-dependent chemistry | No mediators needed | Difficulty of control, ability to regulate only some reactions | f = 0–100 Hz B < 10 mT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golovin, Y.I.; Golovin, D.Y.; Vlasova, K.Y.; Veselov, M.M.; Usvaliev, A.D.; Kabanov, A.V.; Klyachko, N.L. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials 2021, 11, 2255. https://doi.org/10.3390/nano11092255
Golovin YI, Golovin DY, Vlasova KY, Veselov MM, Usvaliev AD, Kabanov AV, Klyachko NL. Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials. 2021; 11(9):2255. https://doi.org/10.3390/nano11092255
Chicago/Turabian StyleGolovin, Yuri I., Dmitry Yu. Golovin, Ksenia Yu. Vlasova, Maxim M. Veselov, Azizbek D. Usvaliev, Alexander V. Kabanov, and Natalia L. Klyachko. 2021. "Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications" Nanomaterials 11, no. 9: 2255. https://doi.org/10.3390/nano11092255
APA StyleGolovin, Y. I., Golovin, D. Y., Vlasova, K. Y., Veselov, M. M., Usvaliev, A. D., Kabanov, A. V., & Klyachko, N. L. (2021). Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials, 11(9), 2255. https://doi.org/10.3390/nano11092255