Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance
Abstract
:1. Introduction
2. Magnetic Recovery as a Major Advantage
3. Enhancement of Enzymatic Activity
4. Porosity Influence on the Biocatalyst Performance
5. Surface Modifying Agents
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Peng, S.C.; Emi, A.; Su, Z.; Monalisa; Kemp, R.A. Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions. Adv. Synth. Catal. 2007, 349, 1917–1922. [Google Scholar]
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. [Google Scholar] [CrossRef]
- Rossi, L.M.; Silva, F.P.; Vono, L.L.R.; Kiyohara, P.K.; Duarte, E.L.; Itri, R.; Landers, R.; Machado, G. Superparamagnetic Nanoparticle-Supported Palladium: A Highly Stable Magnetically Recoverable and Reusable Catalyst for Hydrogenation Reactions. Green Chem. 2007, 9, 379–385. [Google Scholar] [CrossRef]
- Saha, A.; Leazer, J.; Varma, R.S. O-Allylation of Phenols with Allylic Acetates in Aqueous Media Using a Magnetically Separable Catalytic System. Green Chem. 2012, 14, 67–71. [Google Scholar] [CrossRef]
- Vaddula, B.R.; Saha, A.; Leazer, J.; Varma, R.S. A Simple and Facile Heck-type Arylation of Alkenes with Diaryliodonium Salts Using Magnetically Recoverable Pd-Catalyst. Green Chem. 2012, 14, 2133–2136. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chem. Rev. 2014, 114, 6949–6985. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schueth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Bazgir, A.; Hosseini, G.; Ghahremanzadeh, R. Copper Ferrite Nanoparticles: An Efficient and Reusable Nanocatalyst for a Green One-Pot, Three-component Synthesis of Spirooxindoles in Water. ACS Comb. Sci. 2013, 15, 530–534. [Google Scholar] [CrossRef]
- Kundu, D.; Chatterjee, T.; Ranu, B.C. Magnetically Separable CuFe2O4 Nanoparticles Catalyzed Ligand-Free C-S Coupling in Water: Access to (E)- and (Z)-Styrenyl-, Heteroaryl and Sterically Hindered Aryl Sulfides. Adv. Synth. Catal. 2013, 355, 2285–2296. [Google Scholar] [CrossRef]
- Asmat, S.; Husain, Q. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Mater. Sci. Eng. C 2019, 99, 25–36. [Google Scholar] [CrossRef]
- Vahidi, A.K.; Yang, Y.; Ngo, T.P.N.; Li, Z. Simple and Efficient Immobilization of Extracellular His-Tagged Enzyme Directly from Cell Culture Supernatant as Active and Recyclable Nanobiocatalyst: High-Performance Production of Biodiesel from Waste Grease. ACS Catal. 2015, 5, 3157–3161. [Google Scholar] [CrossRef]
- Lawson, B.P.; Golikova, E.; Sulman, A.M.; Stein, B.D.; Morgan, D.G.; Lakina, N.V.; Karpenkov, A.Y.; Sulman, E.M.; Matveeva, V.G.; Bronstein, L.M. Insights into Sustainable Glucose Oxidation Using Magnetically Recoverable Biocatalysts. ACS Sustain. Chem. Eng. 2018, 6, 9845–9853. [Google Scholar] [CrossRef]
- Jaquish, R.; Reilly, A.K.; Lawson, B.P.; Golikova, E.; Sulman, A.M.; Stein, B.D.; Lakina, N.V.; Tkachenko, O.P.; Sulman, E.M.; Matveeva, V.G.; et al. Immobilized glucose oxidase on magnetic silica and alumina: Beyond magnetic separation. Int. J. Biol. Macromol. 2018, 120, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Rehm, T.H.; Bogdan, A.; Hofmann, C.; Loeb, P.; Shifrina, Z.B.; Morgan, D.G.; Bronstein, L.M. Proof of Concept: Magnetic Fixation of Dendron-Functionalized Iron Oxide Nanoparticles Containing Palladium Nanoparticles for Continuous-Flow Suzuki Coupling Reactions. ACS Appl. Mater. Interfaces 2015, 7, 27254–27261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkantzou, E.; Patila, M.; Stamatis, H. Magnetic microreactors with immobilized enzymes-from assemblage to contemporary applications. Catalysts 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Chibata, I. Industrial application of immobilized enzyme systems. Pure Appl. Chem. 1978, 50, 667–675. [Google Scholar] [CrossRef]
- Bartoli, F.; Giovenco, S.; Lostia, O.; Marconi, W.; Morisi, F.; Pittalis, F.; Prosperi, G.; Spotorno, G.; Balsano, F.; Cordova, C.; et al. Biomedical applications of fibre-entrapped enzymes. Pharmacol. Res. Commun. 1977, 9, 521–546. [Google Scholar] [CrossRef]
- Giacin, J.R.; Gilbert, S.G. Chemical modificiation of collagen and the effects on enzyme-binding: Mechanistic considerations. Adv. Exp. Med. Biol. 1977, 86A, 441–471. [Google Scholar]
- Smiley, K.L.; Strandberg, G.W. Immobilized enzymes. Adv. Appl. Microbiol. 1972, 15, 13–38. [Google Scholar]
- Dzionek, A.; Wojcieszynska, D.; Hupert-Kocurek, K.; Adamczyk-Habrajska, M.; Guzik, U. Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Samoylova, Y.V.; Sorokina, K.N.; Piligaev, A.V.; Parmon, V.N. Preparation of stable crosslinked enzyme aggregates (CLEAs) of a Ureibacillus thermosphaericus esterase for application in Malathion removal from wastewater. Catalysts 2018, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Allertz, P.J.; Berger, S.; Sellenk, G.; Dittmer, C.; Dietze, M.; Stahmann, K.-P.; Salchert, K. Approaching immobilization of enzymes onto open porous basotect. Catalysts 2017, 7, 359. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.S.; Khan, F.; Micklefield, J. Selective Covalent Protein Immobilization: Strategies and Applications. Chem. Rev. 2009, 109, 4025–4053. [Google Scholar] [CrossRef] [PubMed]
- de Cuyper, M.; Joniau, M. Binding characteristics and thermal behaviour of cytochrome-C oxidase, inserted into phospholipid-coated, magnetic nanoparticles. Biotechnol. Appl. Biochem. 1992, 16, 201–210. [Google Scholar] [PubMed]
- Dyal, A.; Loos, K.; Noto, M.; Chang, S.W.; Spagnoli, C.; Shafi, K.V.P.M.; Ulman, A.; Cowman, M.; Gross, R.A. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 2003, 125, 1684–1685. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, H.; Li, B.; Wang, J.; Jiang, D. Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe(3)O(4) nanoparticle composite. Biotechnol. Appl. Biochem. 2006, 44, 93–100. [Google Scholar] [PubMed]
- Huang, S.-H.; Liao, M.-H.; Chen, D.-H. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef]
- Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015, 33, 1162–1176. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef]
- Amaro-Reyes, A.; Diaz-Hernandez, A.; Gracida, J.; Garcia-Almendarez, B.E.; Escamilla-Garcia, M.; Arredondo-Ochoa, T.; Regalado, C. Enhanced performance of immobilized xylanase/filter paper-ase on a magnetic chitosan support. Catalysts 2019, 9, 966. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.; Pereira, A.; Finotelli, P.V.; Amaral, P.F.F. Palm oil fatty acids and carotenoids extraction with lipase immobilized in magnetic nanoparticles. Adv. Mater. Lett. 2018, 9, 643–646. [Google Scholar] [CrossRef]
- Gennari, A.; Mobayed, F.H.; Da Rolt Nervis, B.; Benvenutti, E.V.; Nicolodi, S.; da Silveira, N.P.; Volpato, G.; Volken de Souza, C.F. Immobilization of β-Galactosidases on Magnetic Nanocellulose: Textural, Morphological, Magnetic, and Catalytic Properties. Biomacromolecules 2019, 20, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, B.P.; Prieto-Lopez, L.O.; Hoefgen, S.; Xue, L.; Wang, S.; Valiante, V.; Cui, J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis. ACS Appl. Mater. Interfaces 2020, 12, 20982–20990. [Google Scholar] [CrossRef]
- Murugappan, G.; Zakir, M.J.A.; Jayakumar, G.C.; Khambhaty, Y.; Sreeram, K.J.; Rao, J.R. A Novel Approach to Enzymatic Unhairing and Fiber Opening of Skin Using Enzymes Immobilized on Magnetite Nanoparticles. ACS Sustain. Chem. Eng. 2016, 4, 828–834. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A. Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol-gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials 2020, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, H.; Xu, L.; Xue, Y.; Qiu, X.; Huang, H.; Hu, Y. Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydr. Polym. 2020, 234, 115914. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilnejad-Ahranjani, P.; Kazemeini, M.; Singh, G.; Arpanaei, A. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles. Langmuir 2016, 32, 3242–3252. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, V.C.; Bayramoglu, G.; Arica, M.Y. Fibrous polymer functionalized magnetic biocatalysts for improved performance. Methods Enzymol. 2020, 630, 111–132. [Google Scholar] [CrossRef]
- Qi, H.; Du, Y.; Hu, G.; Zhang, L. Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: A biofriendly support for lipase immobilization. Int. J. Biol. Macromol. 2018, 107, 2660–2666. [Google Scholar] [CrossRef]
- Haskell, A.K.; Sulman, A.M.; Golikova, E.P.; Stein, B.D.; Pink, M.; Morgan, D.G.; Lakina, N.V.; Karpenkov, A.Y.; Tkachenko, O.P.; Sulman, E.M.; et al. Glucose Oxidase Immobilized on Magnetic Zirconia: Controlling Catalytic Performance and Stability. ACS Omega 2020, 5, 12329–12338. [Google Scholar] [CrossRef]
- Conte, M.P.; Sahoo, J.K.; Abul-Haija, Y.M.; Lau, K.H.A.; Ulijn, R.V. Biocatalytic Self-Assembly on Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 3069–3075. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.-H.; Cao, S.-L.; Xu, P.; Li, X.-H.; Zhou, J.; Zong, M.-H.; Lou, W.-Y. Preparation of a Nanobiocatalyst by Efficiently Immobilizing Aspergillus niger Lipase onto Magnetic Metal-Biomolecule Frameworks (BioMOF). ChemCatChem 2017, 9, 1794–1800. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, B.; Zhang, H.; Jia, X.; Chen, X.; Zhang, Q. Preparation of light core/shell magnetic composite microspheres and their application for lipase immobilization. RSC Adv. 2016, 6, 65911–65920. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valerio, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; de Oliveira, D. Nanomaterials for biocatalyst immobilization—State of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Rehm, F.B.H.; Chen, S.; Rehm, B.H.A. Enzyme engineering for in situ immobilization. Molecules 2016, 21, 1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Fan, K.; Yan, X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207–3227. [Google Scholar] [CrossRef] [PubMed]
- Uc-Cayetano, E.G.; Ordóñez, L.C.; Cauich-Rodríguez, J.V.; Avilés, F. Enhancement of Electrochemical Glucose Sensing by Using Multiwall Carbon Nanotubes decorated with Iron Oxide Nanoparticles. Int. J. Electrochem. Sci. 2016, 11, 6356–6369. [Google Scholar] [CrossRef]
- Wen, J.; Yun, Z.; Cheng, Z.; Yang, Y. Peroxidase-like activity of Fe3O4@fatty acid-nanoparticles and their application for the detection of uric acid. New J. Chem. 2020, 44, 18608–18615. [Google Scholar] [CrossRef]
- Yang, Z.; Si, S.; Zhang, C. Magnetic single-enzyme nanoparticles with high activity and stability. Biochem. Biophys. Res. Commun. 2008, 367, 169–175. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, H.; Gao, F.; Wang, J.; Zhai, Q.; Hu, M.; Li, S.; Jiang, Y. CPO-Fe3O4@mTiO2 nanocomposite with integrated magnetic separation and enzymatic and photocatalytic activities in efficient degradation of organic contaminants in wastewater. J. Chem. Technol. Biotechnol. 2021, 96, 1437–1446. [Google Scholar] [CrossRef]
- Del Arco, J.; Perez, E.; Naitow, H.; Matsuura, Y.; Kunishima, N.; Fernandez-Lucas, J. Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5’-monophospate analogues. Bioresour. Technol. 2019, 276, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Qiao, J.; Qi, L. Thermoresponsive Porous Polymer Membrane as a Switchable Enzyme Reactor for D-Amino Acid Oxidase Kinetics Study. ACS Appl. Bio Mater. 2021, 4, 966–973. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Choi, S.H.; Kang, Y.C.; Lee, J.-K. Eco-Friendly Composite of Fe3O4-Reduced Graphene Oxide Particles for Efficient Enzyme Immobilization. ACS Appl. Mater. Interfaces 2017, 9, 2213–2222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Qiao, J.; Qi, L.; Zhao, L.; Qiao, J.; Qi, L.; Moon, M.H. Construction of a thermoresponsive magnetic porous polymer membrane enzyme reactor for glutaminase kinetics study. Anal. Bioanal. Chem. 2018, 410, 5211–5218. [Google Scholar] [CrossRef]
- Ali, Z.; Tian, L.; Zhang, B.; Ali, N.; Khan, M.; Zhang, Q. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk-shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzym. Microb. Technol. 2017, 103, 42–52. [Google Scholar] [CrossRef]
- Gao, X.; Zhai, Q.; Hu, M.; Li, S.; Jiang, Y. Hierarchically porous magnetic Fe3O4/Fe-MOF used as an effective platform for enzyme immobilization: A kinetic and thermodynamic study of structure-activity. Catal. Sci. Technol. 2021, 11, 2446–2455. [Google Scholar] [CrossRef]
- Li, D.; Yi, R.; Tian, J.; Li, J.; Yu, B.; Qi, J. Rational synthesis of hierarchical magnetic mesoporous silica microspheres with tunable mesochannels for enhanced enzyme immobilization. Chem. Commun. 2017, 53, 8902–8905. [Google Scholar] [CrossRef]
- Shin, M.-K.; Kang, B.; Yoon, N.-K.; Kim, M.-H.; Ki, J.; Han, S.; Ahn, J.-O.; Haam, S. Synthesis of Fe3O4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents. Nanotechnology 2016, 27, 495705. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, B.; Elzatahry, A.A.; Alghamdi, A.; Yue, Q.; Deng, Y. Synthesis of podlike magnetic mesoporous silica nanochains for use as enzyme support and nanostirrer in biocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 17901–17908. [Google Scholar] [CrossRef] [PubMed]
- Perez-Anguiano, O.; Wenger, B.; Pugin, R.; Scolan, E.; Hofmann, H. Transparent and Robust Silica Coatings with Dual Range Porosity for Enzyme-Based Optical Biosensing. Adv. Funct. Mater. 2017, 27, 1606385. [Google Scholar] [CrossRef]
- Francic, N.; Kosak, A.; Lobnik, A. Immobilisation of organophosphate hydrolase on mesoporous and Stober particles. J. Sol. Gel. Sci. Technol. 2016, 79, 497–509. [Google Scholar] [CrossRef]
- Lin, C.; Xu, K.; Zheng, R.; Zheng, Y. Immobilization of amidase into a magnetic hierarchically porous metal-organic framework for efficient biocatalysis. Chem. Commun. 2019, 55, 5697–5700. [Google Scholar] [CrossRef]
- Marthala, V.R.R.; Urmoneit, L.; Zhou, Z.; Hartmann, M.; Machoke, A.G.F.; Schwieger, W.; Schmiele, M.; Unruh, T. Boron-containing MFI-type zeolites with a hierarchical nanosheet assembly for lipase immobilization. Dalton Trans. 2017, 46, 4165–4169. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Zarafeta, D.; Galanopoulou, A.P.; Stamatis, H. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles. Protein J. 2019, 38, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, K.; He, Y.; Wang, Y.; Yan, J.; Xu, L.; Han, X.; Yan, Y. Lipase Immobilized on a Novel Rigid-Flexible Dendrimer-Grafted Hierarchically Porous Magnetic Microspheres for Effective Resolution of (R, S)-1-Phenylethanol. ACS Appl. Mater. Interfaces 2020, 12, 4906–4916. [Google Scholar] [CrossRef] [PubMed]
- Chapanian, R.; Kwan, D.H.; Constantinescu, I.; Shaikh, F.A.; Rossi, N.A.A.; Withers, S.G.; Kizhakkedathu, J.N. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat. Commun. 2014, 5, 4683. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Hu, H.; Wang, Z.; Du, Y.; Zhong, L.; Zhang, C.; Jiang, Y.; Jia, S.; Cui, J. Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization. J. Colloid Interface Sci. 2021, 590, 436–445. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications. Int. J. Biol. Macromol. 2018, 120, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, J.-K.; Jiang, Y.; Tan, P.; Zhang, L.; Lei, Y.; Liu, X.-Q.; Sun, L.-B. Fabrication of Microporous Metal-Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angew. Chem. Int. Ed. Engl. 2020, 59, 6428–6434. [Google Scholar] [CrossRef]
- Das, A.; Singh, J.; Yogalakshmi, K.N. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int. Biodeterior. Biodegrad. 2017, 117, 183–189. [Google Scholar] [CrossRef]
- Xia, G.-H.; Liu, W.; Jiang, X.-P.; Wang, X.-Y.; Zhang, Y.-W.; Guo, J. Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase. J. Nanosci. Nanotechnol. 2017, 17, 370–376. [Google Scholar] [CrossRef]
- Abdollahi, K.; Yazdani, F.; Panahi, R.; Abdollahi, K. Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: Nanocarrier characterization and immobilized enzyme properties. J. Biol. Inorg. Chem. 2019, 24, 943–959. [Google Scholar] [CrossRef]
- de Lima, J.M.; Furlani, I.L.; da Silva, L.R.G.; Valverde, A.L.; Cass, Q.B. Micro- and nano-sized amine-terminated magnetic beads in a ligand fishing assay. Anal. Methods 2020, 12, 4116–4122. [Google Scholar] [CrossRef] [PubMed]
- Asmat, S.; Anwer, A.H.; Husain, Q. Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours. Int. J. Biol. Macromol. 2019, 140, 484–495. [Google Scholar] [CrossRef]
- Guimaraes, J.R.; Giordano, R.d.L.C.; Tardioli, P.W.; Fernandez-Lafuente, R. Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties. Molecules 2018, 23, 2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Driscoll, A.J.; Johnson, P.A. The development and evaluation of β-glucosidase immobilized magnetic nanoparticles as recoverable biocatalysts. Biochem. Eng. J. 2018, 133, 66–73. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Lv, M.; Zhang, L.; Yang, G. Covalent immobilization of alkaline proteinase on amino-functionalized magnetic nanoparticles and application in soy protein hydrolysis. Biotechnol. Prog. 2019, 35, e2756. [Google Scholar] [CrossRef]
- Xue, F.; Chen, Q.; Li, Y.; Liu, E.; Li, D. Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities. Enzym. Microb. Technol. 2019, 131, 109425. [Google Scholar] [CrossRef]
- Song, J.; Su, P.; Yang, Y.; Wang, T.; Yang, Y. DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability. J. Mater. Chem. B 2016, 4, 5873–5882. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, G.; Li, L.; Zhu, C.; Ma, Y.; Qu, F. Aptamer-functionalized magnetic nanoparticles conjugated organic framework for immobilization of acetylcholinesterase and its application in inhibitors screening. Anal. Chim. Acta 2020, 1140, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Taresco, V.; Martinelli, A.; Piozzi, A. Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocomposites. Enzym. Microb. Technol. 2020, 132, 109439. [Google Scholar] [CrossRef]
- Xiao, Q.; Liu, C.; Ni, H.; Zhu, Y.; Jiang, Z.; Xiao, A. β-Agarase immobilized on tannic acid-modified Fe3O4 nanoparticles for efficient preparation of bioactive neoagaro-oligosaccharide. Food Chem. 2019, 272, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Su, P.; Yang, Y.; Yang, Y. Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: A stable and high-performance biocatalyst. New J. Chem. 2017, 41, 6089–6097. [Google Scholar] [CrossRef]
- Suo, H.; Gao, Z.; Xu, C.; Yu, D.; Xiang, X.; Xu, L.; Huang, H.; Hu, Y. Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 356–364. [Google Scholar] [CrossRef]
- Suo, H.; Xu, L.; Xu, C.; Chen, H.; Yu, D.; Gao, Z.; Huang, H.; Hu, Y. Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. Int. J. Biol. Macromol. 2018, 119, 624–632. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveeva, V.G.; Bronstein, L.M. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. Nanomaterials 2021, 11, 2257. https://doi.org/10.3390/nano11092257
Matveeva VG, Bronstein LM. Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. Nanomaterials. 2021; 11(9):2257. https://doi.org/10.3390/nano11092257
Chicago/Turabian StyleMatveeva, Valentina G., and Lyudmila M. Bronstein. 2021. "Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance" Nanomaterials 11, no. 9: 2257. https://doi.org/10.3390/nano11092257
APA StyleMatveeva, V. G., & Bronstein, L. M. (2021). Magnetic Nanoparticle-Containing Supports as Carriers of Immobilized Enzymes: Key Factors Influencing the Biocatalyst Performance. Nanomaterials, 11(9), 2257. https://doi.org/10.3390/nano11092257