Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Crystalline Structure and Morphology
3.2. Electrochemical Performance
3.3. Electrical Conductivity
3.4. Interface Property and Conduction
3.5. Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, M.; Zappa, D.; Comini, E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy 2021, 46, 27643–27674. [Google Scholar] [CrossRef]
- Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. 2020, 30, 764–774. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, R.; Liu, J.; Wang, H.; Li, H. Yb2O3 Doped Zr0.92Y0.08O2-α(8YSZ) and Its Composite Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Materials 2018, 11, 1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lenser, C.; Menzler, N.H.; Guillon, O. Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 °C. Solid State Ion. 2019, 344, 115138. [Google Scholar] [CrossRef]
- Vostakola, M.F.; Horri, B.A. Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review. Energies 2021, 14, 1280. [Google Scholar] [CrossRef]
- Yun, D.S.; Kim, J.; Kim, S.-J.; Lee, J.-H.; Kim, J.-N.; Yoon, H.C.; Yu, J.H.; Kwak, M.; Yoon, H.; Cho, Y.; et al. Structural and Electrochemical Properties of Dense Yttria-Doped Barium Zirconate Prepared by Solid-State Reactive Sintering. Energies 2018, 11, 3083. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xia, C.; Wang, B.; Tang, Y. Layered LiCoO2–LiFeO2 Heterostructure Composite for Semiconductor-Based Fuel Cells. Nanomaterials 2021, 11, 1224. [Google Scholar] [CrossRef]
- Kerman, K.; Lai, B.-K.; Ramanathan, S. Nanoscale Compositionally Graded Thin-Film Electrolyte Membranes for Low-Temperature Solid Oxide Fuel Cells. Adv. Energy Mater. 2012, 2, 656–661. [Google Scholar] [CrossRef]
- Lan, R.; Tao, S. Novel Proton Conductors in the Layered Oxide Material Li x l Al0.5Co0.5O2. Adv. Energy Mater. 2014, 4. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhou, H.; Ramadoss, K.; Adam, S.; Liu, H.; Lee, S.; Shi, J.; Tsuchiya, M.; Fong, D.D.; et al. Strongly correlated perovskite fuel cells. Nature 2016, 534, 231–234. [Google Scholar] [CrossRef]
- Dong, W.; Tong, Y.; Zhu, B.; Xiao, H.; Wei, L.; Huang, C.; Wang, B.; Wang, X.; Kim, J.-S.; Wang, H. Semiconductor TiO2 thin film as an electrolyte for fuel cells. J. Mater. Chem. A 2019, 7, 16728–16734. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xia, C.; Zhang, W.; Yang, X.; Bao, Z.Y.; Li, J.J.; Zhu, B. Natural Hematite for Next-Generation Solid Oxide Fuel Cells. Adv. Funct. Mater. 2015, 26, 938–942. [Google Scholar] [CrossRef]
- Chen, G.; Liu, H.; He, Y.; Zhang, L.; Asghar, M.I.; Geng, S.; Lund, P.D. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J. Mater. Chem. A 2019, 7, 9638–9645. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Qiao, Z.; Shen, L.; Liu, X.; Cai, Y.; Xu, Y.; Qiao, J.; Wang, H. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO. Int. J. Hydrog. Energy 2018, 43, 12825–12834. [Google Scholar] [CrossRef]
- Xia, C.; Qiao, Z.; Feng, C.; Kim, J.-S.; Wang, B.; Zhu, B. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials 2017, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-J.; Duan, B.-G.; Hsiao, C.-H.; Liu, C.-W.; Young, S.-J. UV Enhanced Emission Performance of Low Temperature Grown Ga-Doped ZnO Nanorods. IEEE Photon. Technol. Lett. 2013, 26, 66–69. [Google Scholar] [CrossRef]
- Carrasco, J.; Lopez, N.; Illas, F. First Principles Analysis of the Stability and Diffusion of Oxygen Vacancies in Metal Oxides. Phys. Rev. Lett. 2004, 93, 225502. [Google Scholar] [CrossRef] [Green Version]
- Norbya, T. Proton conduction in oxides. Solid State Ionics 1990, 40-41, 857–862. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, S.; Parkash, O. A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloy. Compd. 2018, 781, 984–1005. [Google Scholar] [CrossRef]
- Fan, L.; Zhu, B.; Su, P.-C.; He, C. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Raza, R.; Muhammed, M.; Zhu, B. Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Int. J. Hydrogen Energy 2010, 35, 2580–2585. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, B.; Wang, Y.; Raza, R.; Tan, W.; Kim, J.-S.; van Aken, P.A.; Lund, P. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 2017, 37, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cai, Y.; Wang, B.; Deng, H.; Feng, C.; Dong, W.; Li, J.; Zhu, B. The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2−δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2−δ. Int. J. Hydrogen Energy 2016, 41, 18761–18768. [Google Scholar] [CrossRef]
- Dong, X.; Tian, L.; Li, J.; Zhao, Y.; Tian, Y.; Li, Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2−δ–Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6−δ. J. Power Sources 2013, 249, 270–276. [Google Scholar] [CrossRef]
- Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; Sefrioui, Z.; Iborra, E.; Leon, C.; Pennycook, S.J.; Santamaria, J. Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science 2008, 321, 676–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáaedi, A.; Yousefi, R.; Jamali-Sheini, F.; Cheraghizade, M.; Zak, A.K.; Huang, N.M. Optical and electrical properties of p-type Li-doped ZnO nanowires. Superlattices Microstruct. 2013, 61, 91–96. [Google Scholar] [CrossRef]
- Dem’Yanets, L.N.; Kostomarov, D.V.; Kuz’Mina, I.P. Chemistry and Kinetics of ZnO Growth from Alkaline Hydrothermal Solutions. Inorg. Mater. 2002, 38, 124–131. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Zhu, Z.; Ljungberg, R. Solid oxide fuel cell (SOFC) using industrial grade mixed rare-earth oxide electrolytes. Int. J. Hydrog. Energy 2008, 33, 3385–3392. [Google Scholar] [CrossRef]
- Xia, C.; Wang, B.; Cai, Y.; Zhang, W.; Afzal, M.; Zhu, B. Electrochemical properties of LaCePr-oxide/K2WO4 composite electrolyte for low-temperature SOFCs. Electrochem. Commun. 2016, 77, 44–48. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Q.; Zhu, Z.; Liu, X.; Zhu, B. Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2−δ composite. Int. J. Hydrog. Energy 2014, 39, 10718–10723. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Q.; Zhu, Z.; Liu, X.; Afzal, M.; He, Y.; Zhu, B. Effects of composition on the electrochemical property and cell performance of single layer fuel cell. J. Power Sources 2014, 275, 476–482. [Google Scholar] [CrossRef]
- Xia, C.; Cai, Y.; Ma, Y.; Wang, B.; Zhang, W.; Karlsson, M.; Wu, Y.; Zhu, B. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals. ACS Appl. Mater. Interfaces 2016, 8, 20748–20755. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Fan, L.; Cai, Y.; Xia, C.; Liu, Y.; Raza, R.; van Aken, P.A.; Wang, H.; Zhu, B. Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3−δ semiconductor–ionic composites for electrolyte-layer-free fuel cells. J. Mater. Chem. A 2016, 4, 15426–15436. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Akbar, M.; Jin, B.; Tu, Z.; Mushtaq, N.; Wang, B.; Qu, X.; Xia, C.; Huang, Y. A Bulk-Heterostructure Nanocomposite Electrolyte of Ce0.8Sm0.2O2-δ–SrTiO3 for Low-Temperature Solid Oxide Fuel Cells. Nano-Micro Lett. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Y.; Guo, L.; Liu, H. A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. J. Power Sources 2014, 256, 43–51. [Google Scholar] [CrossRef]
- Shen, S.; Ni, M. 2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. Int. J. Hydrog. Energy 2015, 40, 5160–5168. [Google Scholar] [CrossRef]
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev. 2004, 104, 4791–4844. [Google Scholar] [CrossRef]
- Adler, S.; Chen, X.; Wilson, J. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 2007, 245, 91–109. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, H.; Chen, M.; Wang, C.; Wang, H.; Singh, M.; Zhu, B. Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. Int. J. Hydrog. Energy 2013, 38, 11398–11405. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Q.; Muhammad, A.; Zhu, B. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell. J. Power Sources 2015, 286, 388–393. [Google Scholar] [CrossRef]
- Qiao, Z.; Xia, C.; Cai, Y.; Afzal, M.; Wang, H.; Qiao, J.; Zhu, B. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 2018, 392, 33–40. [Google Scholar] [CrossRef]
- Xia, C.; Mi, Y.; Wang, B.; Lin, B.; Chen, G.; Zhu, B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W.; Luo, Y.; Liu, H.; Geng, S.; Yu, K.; Liu, G. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2018, 43, 417–425. [Google Scholar] [CrossRef]
- Fan, L.; Su, P.-C. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells. J. Power Sources 2016, 306, 369–377. [Google Scholar] [CrossRef]
- Chan, S.; Khor, K.; Xia, Z. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 2001, 93, 130–140. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Y.; Gu, H.; Gao, L.; Chen, H.; Guo, L. La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs. Mater. Res. Bull. 2009, 44, 1717–1721. [Google Scholar] [CrossRef]
- Fukushima, H.; Kozu, T.; Shima, H.; Funakubo, H.; Uchida, H.; Katoda, T.; Nishida, K. Evaluation of oxygen vacancy in ZnO using Raman spectroscopy. 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 24–27 May 2015; pp. 28–31. [Google Scholar] [CrossRef]
- Lee, T.-H.; Fan, L.; Yu, C.-C.; Wiria, F.E.; Su, P.-C. A high-performance SDC-infiltrated nanoporous silver cathode with superior thermal stability for low temperature solid oxide fuel cells. J. Mater. Chem. A 2018, 6, 7357–7363. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Li, D.; Qi, F.; Yu, L.; Xia, C. Effects of P-N and N-N heterostructures and band alignment on the performance of low-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2020, 46, 9790–9798. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Kato, T.; Shibata, N.; Taniguchi, T.; Ikuhara, Y. Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride. Nat. Commun. 2015, 6, 6327. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-J.; Wang, Y.; Xu, Q.; Ju, H.-X.; Wang, T.; Tao, Z.-J.; Hu, S.-W.; Zhu, J.-F. Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles. Chin. Chem. Lett. 2017, 28, 1760–1766. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, L.; Cai, Y.; Zhang, W.; Wang, B.; Zhu, B. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach. ACS Appl. Mater. Interfaces 2017, 9, 23614–23623. [Google Scholar] [CrossRef] [PubMed]
- Mineshige, A.; Taji, T.; Muroi, Y.; Kobune, M.; Fujii, S.; Nishi, N.; Inaba, M.; Ogumi, Z. Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy. Solid State Ionics 2000, 135, 481–485. [Google Scholar] [CrossRef]
R0 (Ω cm2) | R1 (Ω cm2) | Q1 (F cm−2) | n1 | C1 (F) | R2 (Ω cm2) | Q2 (F cm−2) | n2 | C2 (F) | RP = R1 + R2 | |
---|---|---|---|---|---|---|---|---|---|---|
3LZO-7SDC | 0.0939 | 0.0478 | 1.2320 | 0.5641 | 0.1380 | 0.2083 | 2.7020 | 0.7340 | 2.1940 | 0.2561 |
5LZO-5SDC | 0.0782 | 0.0905 | 1.8600 | 0.6617 | 0.7480 | 0.1574 | 0.9454 | 0.4784 | 0.1185 | 0.2479 |
7LZO-3SDC | 0.1372 | 0.1174 | 0.5378 | 0.5230 | 0.0430 | 0.3634 | 1.6400 | 0.6752 | 1.2790 | 0.4808 |
Cell Electrolyte | Ro (Ω cm2) | Rp (Ω cm2) | Reference |
---|---|---|---|
LZO | 0.1773 | 0.3809 | [14] |
SDC | 0.1842 | 1.1032 | [34] |
STO-SDC | 0.1074 | 0.2915 | [34] |
LSCF-SCDC | 0.32 | >2 | [22] |
NCAL-NSDC | 0.1 | ~0.4 | [23] |
5LZO-5SDC | 0.0782 | 0.2479 | This work |
550 °C | 500 °C | 450 °C | Ea (eV) | |
---|---|---|---|---|
(S cm−1) | 0.028 | 0.01585 | 0.0055 | 0.693 |
(S cm−1) | 1.5 × 10−4 | 7.5 × 10−5 | 2.625 × 10−5 | 0.829 |
(S cm−1) | 9.66 × 10−5 | 6.188 × 10−5 | 2.25 × 10−5 | 0.557 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Z.; Tian, Y.; Liu, M.; Jin, B.; Akbar, M.; Mushtaq, N.; Wang, X.; Dong, W.; Wang, B.; Xia, C. Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials 2021, 11, 2277. https://doi.org/10.3390/nano11092277
Tu Z, Tian Y, Liu M, Jin B, Akbar M, Mushtaq N, Wang X, Dong W, Wang B, Xia C. Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials. 2021; 11(9):2277. https://doi.org/10.3390/nano11092277
Chicago/Turabian StyleTu, Zhengwen, Yuanyuan Tian, Mingyang Liu, Bin Jin, Muhammad Akbar, Naveed Mushtaq, Xunying Wang, Wenjing Dong, Baoyuan Wang, and Chen Xia. 2021. "Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells" Nanomaterials 11, no. 9: 2277. https://doi.org/10.3390/nano11092277
APA StyleTu, Z., Tian, Y., Liu, M., Jin, B., Akbar, M., Mushtaq, N., Wang, X., Dong, W., Wang, B., & Xia, C. (2021). Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials, 11(9), 2277. https://doi.org/10.3390/nano11092277