Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source
Abstract
:1. Introduction
2. Materials and Method
2.1. Simulation of Optical Module and Light Film Material Selection for Mini-LEDs
2.2. Model Construction of DRCA
2.3. Fabrication of QD Film
2.4. Simulation and Optimization of DRCA Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LEDs, Micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 1–16. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2017, 7, 17168. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Lee, H.E.; Lee, D.; Lee, T.-I.; Shin, J.H.; Choi, G.-M.; Kim, C.; Lee, S.H.; Lee, J.H.; Kim, Y.H.; Kang, S.-M.; et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 2018, 55, 454–462. [Google Scholar] [CrossRef]
- Lo, Y.-K.; Wu, K.-H.; Pai, K.-J.; Chiu, H.-J. Design and Implementation of RGB LED Drivers for LCD Backlight Modules. IEEE Trans. Ind. Electron. 2009, 56, 4862–4871. [Google Scholar] [CrossRef]
- Mei, W.; Zhang, Z.; Zhang, A.; Li, D.; Zhang, X.; Wang, H.; Chen, Z.; Li, Y.; Li, X.; Xu, X. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491. [Google Scholar] [CrossRef]
- Hames, B.C.; Mora-Seró, I.; Sánchez, R.S. Device performance and light characteristics stability of quantum-dot-based white-light-emitting diodes. Nano Res. 2017, 11, 1575–1588. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 1–23. [Google Scholar] [CrossRef]
- Lee, X.-H.; Lin, C.-C.; Chang, Y.-Y.; Chen, H.-X.; Sun, C.-C. Power management of direct-view LED backlight for liquid crystal display. Opt. Laser Technol. 2013, 46, 142–144. [Google Scholar] [CrossRef]
- Lee, T.-X.; Chen, B.-S. High Uniformity and Tolerance Design for Direct-Lit LED Backlight Illumination Using Lagrange Interpolation. J. Disp. Technol. 2016, 12, 1403–1410. [Google Scholar] [CrossRef]
- Qin, Z. Luminance enhancement without sacrificing the viewing angle in a direct-lit backlight by addressing the angle-dependent characteristic of the prism film. Displays 2017, 50, 49–56. [Google Scholar] [CrossRef]
- Kim, G.; Shih, Y.-C.; Shi, F. Optimal Design of Quantum Dot Color Conversion Film in LCD Backlighting. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 011010. [Google Scholar] [CrossRef]
- Chen, E.; Xie, H.; Huang, J.; Miu, H.; Shao, G.; Li, Y.; Guo, T.; Xu, S.; Ye, Y. Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays. Opt. Express 2018, 26, 3466–3482. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, G.; Wang, L.; Chen, Z.; Xu, X.; Dong, Y.; Moheghi, A.; Yang, D.-K. Full color waveguide liquid crystal display. Opt. Lett. 2017, 42, 3706–3709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, H.; Zhou, X.; Liu, M. Comparative evaluation of color reproduction ability and energy efficiency between different wide-color-gamut LED display approaches. Optik 2020, 225, 165894. [Google Scholar] [CrossRef]
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Chen, S.-W.H.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Zhao, M.; Zhou, Y.; Molokeev, M.S.; Liu, Q.; Zhang, Q.; Xia, Z. Polyhedron Transformation toward Stable Narrow-Band Green Phosphors for Wide-Color-Gamut Liquid Crystal Display. Adv. Funct. Mater. 2019, 29, 1901988. [Google Scholar] [CrossRef]
- Oh, J.H.; Kang, H.; Ko, M.; Do, Y.R. Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight. Opt. Express 2015, 23, A791–A804. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum Dots for Display Applications. Angew. Chem.-Int. Ed. 2020, 59, 22312–22323. [Google Scholar] [CrossRef]
- Kang, H.; Kim, S.; Oh, J.H.; Yoon, H.C.; Jo, J.-H.; Yang, H.; Do, Y.R. Color-by-Blue QD-Emissive LCD Enabled by Replacing RGB Color Filters with Narrow-Band GR InP/ZnSeS/ZnS QD Films. Adv. Opt. Mater. 2018, 6. [Google Scholar] [CrossRef]
- Kim, H.-J.; Shin, M.-H.; Lee, J.-Y.; Kim, J.-H.; Kim, Y.-J. Realization of 95% of the Rec 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Opt. Express 2017, 25, 10724–10734. [Google Scholar] [CrossRef]
- Ho, S.-J.; Chen, H.-S. Inverse μ-photonic crystals enhanced the features of mini-sized quantum dot LEDs. J. Mater. Chem. C 2019, 8, 4309–4313. [Google Scholar] [CrossRef]
- Huang, B.-L.; Guo, T.-L.; Xu, S.; Ye, Y.; Chen, E.-G.; Lin, Z.-X. Color Converting Film With Quantum-Dots for the Liquid Crystal Displays Based on Inkjet Printing. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31, e1804294. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chen, S.-C.; Deng, M.-Y.; Ho, Y.-H.; Lin, C.-A.; Tsai, C.-L.; Liao, W.-S.; Liu, C.-I.; Wu, C.-E.; Peng, J.-T. AM PWM Driving Circuit for Mini-LED Backlight in Liquid Crystal Displays. IEEE J. Electron Devices Soc. 2021, 9, 365–372. [Google Scholar] [CrossRef]
- Tan, G.; Huang, Y.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-H.; Chang, S.-H.; Liaw, B.-Y.; Liu, C.-Y.; Chou, C.-Y.; Zhou, J.-R.; Lin, C.-C.; Kuo, H.-C.; Song, L.; Feng, L.; et al. Research on a Novel GaN-based Converted Mini-LED Backlight Module via a Spectrum-Decouple System. IEEE Access 2020, 8, 138823–138833. [Google Scholar] [CrossRef]
- Guo, W.; Chen, N.; Lu, H.; Su, C.; Lin, Y.; Chen, G.; Lu, Y.; Zheng, L.; Peng, Z.; Kuo, H.-C.; et al. The Impact of Luminous Properties of Red, Green, and Blue Mini-LEDs on the Color Gamut. IEEE Trans. Electron Devices 2019, 66, 2263–2268. [Google Scholar] [CrossRef]
- Hsiang, E.-L.; Yang, Q.; He, Z.; Zou, J.; Wu, S.-T. Halo effect in high-dynamic-range mini-LED backlit LCDs. Opt. Express 2020, 28, 36822–36837. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Wang, F.; Guo, L.; Wang, J.; Guo, Z. Backlight Driving Circuit and Method, Backlight Module, Backlight Circuit and Display Device. U.S. Patent 10,726,774 B2, 28 July 2020. [Google Scholar]
- Liu, C.-P. Display Module. U.S. Patent 2019/0243187 A1, 8 August 2019. [Google Scholar]
- He, Z.; Yin, K.; Hsiang, E.-L.; Wu, S.-T. Volumetric light-shaping polymer-dispersed liquid crystal films for mini-LED backlights. Liq. Cryst. 2020, 47, 1458–1463. [Google Scholar] [CrossRef]
- Chen, E.; Guo, J.; Jiang, Z.; Shen, Q.; Ye, Y.; Xu, S.; Sun, J.; Yan, Q.; Guo, T. Edge/direct-lit hybrid mini-LED backlight with U-grooved light guiding plates for local dimming. Opt. Express 2021, 29, 12179–12194. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.T.; Chen, C.L.; Chen, L.-C.; Tien, C.H.; Nguyen, H.T.; Wang, H.-C. Hollow Light Guide Module Involving Mini Light-Emitting Diodes for Asymmetric Luminous Planar Illuminators. Energies 2019, 12, 2755. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.-T.; Pai, Y.-M.; Chen, C.-H.; Kuo, H.-C.; Chen, L.-C. A Light Guide Plate That Uses Asymmetric Intensity Distribution of Mini-LEDs for the Planar Illuminator. Crystals 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Ohno, H. Design of a coaxial light guide producing a wide-angle light distribution. Appl. Opt. 2017, 56, 3977. [Google Scholar] [CrossRef]
- Lu, B.; Wang, Y.; Hyun, B.-R.; Kuo, H.-C.; Liu, Z. Color Difference and Thermal Stability of Flexible Transparent InGaN/GaN Multiple Quantum Wells Mini-LED Arrays. IEEE Electron Device Lett. 2020, 41, 1040–1043. [Google Scholar] [CrossRef]
- Lin, S.; Yu, J.; Cai, J.; Chen, E.; Xu, S.; Ye, Y.; Guo, T. Design of a freeform lens array based on an adjustable Cartesian candela distribution. J. Mod. Opt. 2019, 66, 2015–2024. [Google Scholar] [CrossRef]
- Zhu, Z.-M.; Yuan, J.; Sun, X.; Peng, B.; Xu, X.; Liu, Q.-X. LED diffused transmission freeform surface design for uniform illumination. J. Opt. 2019, 48, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-H.; Kang, C.-Y.; Chang, S.-H.; Lin, C.-H.; Lin, C.-Y.; Wu, T.; Sher, C.-W.; Lin, C.-C.; Lee, P.-T.; Kuo, H.-C. Ultra-High Light Extraction Efficiency and Ultra-Thin Mini-LED Solution by Freeform Surface Chip Scale Package Array. Crystals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-T.; Wu, J.-H.; Ren, Z.-Y.; Song, Y.-X.; Li, J.-S. Improving Ambient Contrast Ratio and Color Uniformity of Mini Full Color Light-Emitting Diodes Using an SiO2/Graphite Bilayered Packaging Structure. J. Electron. Packag. 2021, 144. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tien, C.-H.; Chen, D.-F.; Ye, Z.-T.; Kuo, H.-C. High-Uniformity Planar Mini-Chip-Scale Packaged LEDs with Quantum Dot Converter for White Light Source. Nanoscale Res. Lett. 2019, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Choi, H.W. Packaging of InGaN stripe-shaped light-emitting diodes. Appl. Opt. 2018, 57, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Miao, J.; Liu, Y.; Wan, H.; Li, N.; Zhou, S.; Gui, C. Enhanced Light Extraction of Flip-Chip Mini-LEDs with Prism-Structured Sidewall. Nanomaterials 2019, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Peng, B.; Yuan, J.; Xu, X. Design method of double freeform surface lens with diffuse reflection. Light. Res. Technol. 2019, 52, 247–256. [Google Scholar] [CrossRef]
- Zhu, Z.-M.; Sun, X.; Peng, B. The Design of Diffuse Reflective Off-Axis Surface for Noncircular LED Arrays. IEEE Photonics J. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Kikuchi, S.; Shibata, Y.; Ishinabe, T.; Fujikake, H. Thin mini-LED backlight using reflective mirror dots with high luminance uniformity for mobile LCDs. Opt. Express 2021, 29, 26724. [Google Scholar] [CrossRef]
BEF1 | The refractive index = 1.56, the apex angle = 90 degrees |
BEF2 | The refractive index = 1.56, the apex angle = 90 degrees |
diffuse reflection cavity array, DRCA | Lambertian diffusion surface characteristics, Reflectance 94% |
QD film | Lambertian diffusion surface characteristics, 50% transmittance and 50% reflectivity |
MCPCB | Lambertian diffusion surface characteristics, Reflectance 90% |
Light source | Input light 1 W Center wavelength 450 nm 50 million rays |
1 BEF Luminance (cd/m2) | 2 BEF Luminance (cd/m2) | |
---|---|---|
P1 | 15,910 | 23,695 |
P2 | 14,220 | 21,785 |
P3 | 15,730 | 23,758 |
P4 | 16,218 | 24,025 |
P5 | 14,335 | 21,884 |
P6 | 15,276 | 23,255 |
P7 | 15,832 | 23,758 |
P8 | 14,205 | 21,655 |
P9 | 15,430 | 23,585 |
Average luminance/ CIE (x,y) | 15,240/ CIE (x 0.3268,y 0.2845) | 230,44/ CIE (x 0.3545,y 0.3059) |
Uniformity (%) | 87.58% | 90.13% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.T.; Cheng, Y.H.; Liu, K.H.; Yang, K.S. Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source. Nanomaterials 2021, 11, 2395. https://doi.org/10.3390/nano11092395
Ye ZT, Cheng YH, Liu KH, Yang KS. Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source. Nanomaterials. 2021; 11(9):2395. https://doi.org/10.3390/nano11092395
Chicago/Turabian StyleYe, Zhi Ting, Yuan Heng Cheng, Ku Huan Liu, and Kai Shiang Yang. 2021. "Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source" Nanomaterials 11, no. 9: 2395. https://doi.org/10.3390/nano11092395
APA StyleYe, Z. T., Cheng, Y. H., Liu, K. H., & Yang, K. S. (2021). Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source. Nanomaterials, 11(9), 2395. https://doi.org/10.3390/nano11092395