Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Parikh, P.; Chakraborty, C.; Abhilash, T.S.; Sengupta, S.; Cheng, C.; Wu, J.; Deshmukh, M.M. Dynamically tracking the strain across the metal-insulator transition in VO2 measured using electromechanical resonators. Nano Lett. 2013, 13, 4685–4689. [Google Scholar] [CrossRef]
- Park, J.H.; Coy, J.M.; Kasirga, T.S.; Huang, C.; Fei, Z.; Hunter, S.; Cobden, D.H. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature 2013, 500, 431–434. [Google Scholar] [CrossRef]
- Antunez, E.E.; Salazar-Kuri, U.; Estevez, J.O.; Campos, J.; Basurto, M.A.; Jiménez Sandoval, S.; Agarwal, V. Porous silicon-VO2 based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range. J. Appl. Phys. 2015, 118, 134503. [Google Scholar] [CrossRef]
- Lim, H.; Stavrias, N.; Johnson, B.C.; Marvel, R.E.; Haglund, R.F.; McCallum, J.C. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films. J. Appl. Phys. 2014, 115, 093107. [Google Scholar] [CrossRef]
- Li, S.Y.; Mlyuka, N.R.; Primetzhofer, D.; Hallén, A.; Possnert, G.; Niklasson, G.A.; Granqvist, C.G. Bandgap widening in thermochromic Mg-doped VO2 thin films: Quantitative data based on optical absorption. Appl. Phys. Lett. 2013, 103, 161907. [Google Scholar] [CrossRef] [Green Version]
- Pouget, J.P.; Launois, H.; D’Haenens, J.P.; Merenda, P.; Rice, T.M. Electron Localization Induced by Uniaxial Stress in Pure VO2. Phys. Rev. Lett. 1975, 35, 873–875. [Google Scholar] [CrossRef]
- Cavalleri, A.; Dekorsy, T.; Chong, H.H.W.; Kieffer, J.C.; Schoenlein, R.W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 2004, 70, 161102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wagner, L.K. Computation of the correlated metal-insulator transition in vanadium dioxide from first principles. Phys. Rev. Lett. 2015, 114, 176401. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.W.; Ko, C.; Ramanathan, S.; Cahill, D.G. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett. 2010, 96, 151906. [Google Scholar] [CrossRef]
- Xie, R.; Bui, C.T.; Varghese, B.; Zhang, Q.; Sow, C.H.; Li, B.; Thong, J.T.L. An Electrically Tuned Solid-State Thermal Memory Based on Metal-Insulator Transition of Single-Crystalline VO2 Nanobeams. Adv. Funct. Mater. 2011, 21, 1602–1607. [Google Scholar] [CrossRef]
- Kizuka, H.; Yagi, T.; Jia, J.; Yamashita, Y.; Nakamura, S.; Taketoshi, N.; Shigesato, Y. Temperature dependence of thermal conductivity of VO2 thin films across metal–insulator transition. Jpn. J. Appl. Phys. 2015, 54, 053201. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Ke, F.; Li, G.; Ma, Y.; Liu, X.; Liu, C.; Han, Y.; Ma, Y.; Gao, C. Anomalous semiconducting behavior on VO2 under high pressure. RSC Adv. 2015, 5, 54843–54847. [Google Scholar] [CrossRef]
- Wu, J.; Gu, Q.; Guiton, B.S.; de Leon, N.P.; Ouyang, L.; Park, H. Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams. Nano Lett. 2006, 6, 2313–2317. [Google Scholar] [CrossRef]
- Bai, L.; Li, Q.; Corr, S.A.; Meng, Y.; Park, C.; Sinogeikin, S.V.; Ko, C.; Wu, J.; Shen, G. Pressure-induced phase transitions and metallization in VO2. Phys. Rev. B 2015, 91, 104110. [Google Scholar] [CrossRef] [Green Version]
- Atkin, J.M.; Berweger, S.; Chavez, E.K.; Raschke, M.B.; Cao, J.; Fan, W.; Wu, J. Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition. Phys. Rev. B 2012, 85, 020101. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh, J.; Liu, K.; Wu, J. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. J. Am. Chem. Soc. 2013, 135, 4850–4855. [Google Scholar] [CrossRef]
- Kim, C.; Shin, J.S.; Ozaki, H. Effect of W doping in metal–insulator transition material VO2 by tunnelling spectroscopy. J. Phys. Condens. Matter 2007, 19, 096007. [Google Scholar] [CrossRef]
- Liu, K.; Fu, D.; Cao, J.; Suh, J.; Wang, K.X.; Cheng, C.; Ogletree, D.F.; Guo, H.; Sengupta, S.; Khan, A.; et al. Dense electron system from gate-controlled surface metal-insulator transition. Nano Lett. 2012, 12, 6272–6277. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ji, H.; Guo, W.; Nevidomskyy, A.H.; Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nat. Nanotechnol. 2012, 7, 357–362. [Google Scholar] [CrossRef]
- Yoon, H.; Choi, M.; Lim, T.W.; Kwon, H.; Ihm, K.; Kim, J.K.; Choi, S.Y.; Son, J. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater. 2016, 15, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Guiton, B.S.; Gu, Q.; Prieto, A.L.; Gudiksen, M.S.; Park, H. Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections. J. Am. Chem. Soc. 2005, 127, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Fan, W.; Zheng, H.; Wu, J. Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams. Nano Lett. 2009, 9, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liang, X.; Liu, B.; Song, Y.; Gao, G.; Xu, X. Thermal conductivity of V2O5 nanowires and their contact thermal conductance. Nanoscale 2020, 12, 1138–1143. [Google Scholar] [CrossRef]
- Wu, X.; Tao, Q.; Li, D.; Wang, Q.; Zhang, X.; Jin, H.; Li, J.; Wang, S.; Xu, X. Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Res. 2021. [Google Scholar] [CrossRef]
- Aiyiti, A.; Bai, X.; Wu, J.; Xu, X.; Li, B. Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS2 using electron beam self-heating technique. Sci. Bull. 2018, 63, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Xu, X.; Tan, C.-L.; Bae, S.-K.; Peres, N.M.R.; Hong, B.-H.; Özyilmaz, B.; Castro Neto, A.H. Transport properties of graphene with one-dimensional charge defects. EPL (Europhys. Lett.) 2011, 94, 28003. [Google Scholar] [CrossRef]
- Guo, H.; Wang, K.; Deng, Y.; Oh, Y.; Syed Asif, S.A.; Warren, O.L.; Shan, Z.W.; Wu, J.; Minor, A.M. Nanomechanical actuation from phase transitions in individual VO2 micro-beams. Appl. Phys. Lett. 2013, 102, 231909. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Liu, K.; Tao, T.; Lo, K.; Cheng, C.; Liu, B.; Zhang, R.; Bechtel, H.A.; Wu, J. Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films. J. Appl. Phys. 2013, 113, 043707. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.B.; Wentzcovitch, R.M.; Schulz, W.W.; Canfield, P.C. Resistivity of the high-temperature metallic phase of VO2. Phys. Rev. B 1993, 48, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J.W.; Khanal, D.R.; Ogletree, D.F.; Grossman, J.C.; et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 2009, 4, 732–737. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Z.; Chen, W.; Cobden, D.H. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 2009, 4, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Wei, J.; Natelson, D. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 2012, 12, 2988–2992. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hippalgaonkar, K.; Yang, F.; Hong, J.; Ko, C.; Suh, J.; Liu, K.; Wang, K.; Urban, J.J.; Zhang, X.; et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017, 355, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yan, Y.; Dong, L.; Guo, J.; Aiyiti1, A.; Xu, X.; Li, B. Thermal conduction across a boron nitride and SiO2 interface. J. Phys. D Appl. Phys. 2017, 50, 104002. [Google Scholar]
- Liu, D.; Chen, X.; Yan, Y.; Zhang, Z.; Jin, Z.; Yi, K.; Zhang, C.; Zheng, Y.; Wang, Y.; Yang, J.; et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Tang, W.; Xu, X. Recent progresses of thermal conduction in two-dimensional materials. Acta Phys. Sin. 2020, 69, 196602. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Li, B. Phonon thermal conduction in novel 2D materials. J. Phys. Condens. Matter 2016, 28, 483001. [Google Scholar] [CrossRef]
- Guo, J.; Huang, Y.; Wu, X.; Wang, Q.; Zhou, X.; Xu, X.; Li, B. Thickness-Dependent In-Plane Thermal Conductivity and Enhanced Thermoelectric Performance in p-Type ZrTe5 Nanoribbons. Phys. Status Solidi RRL 2019, 13, 1800529. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, G.; Li, B. Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 2010, 5, 85–90. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Sun, X.; Wang, H.; Zhang, Y. Third-order elastic constants of ZnO and size effect in ZnO nanowires. J. Appl. Phys. 2014, 115, 213516. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.; Peleckis, G.; Wang, X.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337–4342. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, H.; Zhai, Y. Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect. Appl. Phys. Lett. 2013, 103, 243901. [Google Scholar] [CrossRef]
- Nakamura, Y.; Isogawa, M.; Ueda, T.; Yamasaka, S.; Matsui, H.; Kikkawa, J.; Ikeuchi, S.; Oyake, T.; Hori, T.; Shiomi, J.; et al. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy 2015, 12, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar] [CrossRef]
- Tanusilp, S.; Ohishi, Y.; Muta, H.; Kurosaki, K. Synthesis and characterization of bulk Si–Ti nanocomposite and comparisons of approaches for enhanced thermoelectric properties in nanocomposites composed of Si and various metal silicides. J. Appl. Phys. 2020, 128, 095101. [Google Scholar] [CrossRef]
- Taniguchi, T.; Terada, T.; Komatsubara, Y.; Ishibe, T.; Konoike, K.; Sanada, A.; Naruse, N.; Mera, Y.; Nakamura, Y. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity. Nanoscale 2021, 13, 4971–4977. [Google Scholar] [CrossRef]
Sample | Length (µm) | Diameter (nm) | κ (Wm−1K−1) @RT | η Across MIT |
---|---|---|---|---|
VO2-A | 11.39 | 398.1 | 2.32 ± 0.12 | - |
VO2-B | 20.87 | 530.7 | 3.06 ± 0.15 | 4.12% |
VO2-C | 20.72 | 708.4 | 4.96 ± 0.25 | 5.68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, Q.; Xu, X. Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature. Nanomaterials 2021, 11, 2428. https://doi.org/10.3390/nano11092428
Li D, Wang Q, Xu X. Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature. Nanomaterials. 2021; 11(9):2428. https://doi.org/10.3390/nano11092428
Chicago/Turabian StyleLi, Da, Qilang Wang, and Xiangfan Xu. 2021. "Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature" Nanomaterials 11, no. 9: 2428. https://doi.org/10.3390/nano11092428
APA StyleLi, D., Wang, Q., & Xu, X. (2021). Thermal Conductivity of VO2 Nanowires at Metal-Insulator Transition Temperature. Nanomaterials, 11(9), 2428. https://doi.org/10.3390/nano11092428