GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirth, R.; Karnutsch, C.; Kugler, S.; Streubel, K. High-efficiency resonant-cavity LEDs emitting at 650 nm. IEEE Photonics Technol. Lett. 2001, 13, 421–423. [Google Scholar] [CrossRef]
- Huang, S.Y.; Horng, R.H.; Liu, P.L.; Wu, J.Y.; Wu, H.W.; Wuu, D.S. Thermal Stability Improvement of Vertical Conducting Green Resonant-Cavity Light-Emitting Diodes on Copper Substrates. IEEE Photonics Technol. Lett. 2008, 20, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.R.; Ko, T.S.; Lu, T.S.; Chang, Y.A.; Kuo, H.C.; Kuo, Y.K.; Tsai, J.K.; Laih, L.W.; Wang, S.C. Fabrication and Characterization of Temperature Insensitive 660-nm Resonant-Cavity LEDs. J. Lightwave Technol. 2008, 26, 1891–1900. [Google Scholar] [CrossRef]
- Yeh, P.S.; Yu, M.C.; Lin, J.H.; Huang, C.C.; Liao, Y.C.; Lin, D.W.; Fan, J.R.; Kuo, H.C. GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer. IEEE Photonics Technol. Lett. 2014, 26, 2488–2491. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, S.J.; Park, S.H. InGaN-Based Resonant-Cavity Light-Emitting Diodes with a ZrO2/SiO2 Distributed Bragg Reflector and Metal Reflector. Jpn. J. Appl. Phys. 2010, 49, 122102. [Google Scholar] [CrossRef]
- Cai, W.; Yuan, J.L.; Ni, S.Y.; Shi, Z.; Zhou, W.D.; Liu, Y.H.; Wang, Y.J.; Amano, H. GaN-on-Si resonant-cavity light-emitting diode incorporating top and bottom dielectric distributed Bragg reflectors. Appl. Phys. Express 2019, 12, 032004. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Horng, R.H.; Wuu, D.S.; Wang, W.K.; Yu, T.E.; Lin, P.R.; Juang, F.S. Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes. Jpn. J. Appl. Phys. 2007, 46, 3416–3419. [Google Scholar] [CrossRef]
- Huang, S.Y.; Horng, R.H.; Shi, J.W.; Kuo, H.C.; Wuu, D.S. High-Performance InGaN-Based Green Resonant-Cavity Light-Emitting Diodes for Plastic Optical Fiber Applications. J. Lightwave Technol. 2009, 27, 4084–4094. [Google Scholar] [CrossRef] [Green Version]
- Moudakir, T.; Genty, F.; Kunzer, M.; Borner, P.; Passow, T.; Suresh, S.; Patriarche, G.; Kohler, K.; Pletschen, W.; Wagner, J.; et al. Design, Fabrication, and Characterization of Near-Milliwatt-Power RCLEDs Emitting at 390 nm. IEEE Photonics J. 2013, 5, 8400709. [Google Scholar] [CrossRef]
- Inaba, T.; Tatebayashi, J.; Shiomi, K.; Timmerman, D.; Ichikawa, S.; Fujiwara, Y. GaN:Eu, O-Based Resonant-Cavity Light Emitting Diodes with Conductive AlInN/GaN Distributed Bragg Reflectors. ACS Appl. Electron. Mater. 2020, 2, 732–738. [Google Scholar] [CrossRef]
- Berger, C.; Dadgar, A.; Bläsing, J.; Franke, A.; Hempel, T.; Goldhahn, R.; Christen, J.; Krost, A. Growth of AlInN/AlGaN distributed Bragg reflectors for high quality microcavities. Phys. Status Solidi C 2012, 9, 1253–1258. [Google Scholar] [CrossRef]
- Butté, R.; Feltin, E.; Dorsaz, J.; Christmann, G.; Carlin, J.F.; Grandjean, N.; Ilegems, M. Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities. Jpn. J. Appl. Phys. 2005, 44, 7207–7216. [Google Scholar] [CrossRef]
- Khan, M.A.; Kuznia, J.N.; Van Hove, J.M.; Olson, D.T. Reflective filters based on single-crystal GaN/AlxGa1−xN multilayers deposited using low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 1991, 59, 1449–1451. [Google Scholar] [CrossRef]
- Hu, X.L.; Liu, W.J.; Weng, G.E.; Zhang, J.Y.; Lv, X.Q.; Liang, M.M.; Chen, M.; Huang, H.J.; Ying, L.Y.; Zhang, B.P. Fabrication and Characterization of High-Quality Factor GaN-Based Resonant-Cavity Blue Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2012, 24, 1472–1474. [Google Scholar] [CrossRef]
- Hu, X.L.; Zhang, J.Y.; Liu, W.J.; Chen, M.; Zhang, B.P.; Xu, B.S.; Wang, Q.M. Resonant-cavity blue light-emitting diodes fabricated by two-step substrate transfer technique. Electron. Lett. 2011, 47, 986–988. [Google Scholar] [CrossRef]
- Feng, M.X.; Li, Z.C.; Wang, J.; Zhou, R.; Sun, Q.; Sun, X.J.; Li, D.B.; Gao, H.W.; Zhou, Y.; Zhang, S.M.; et al. Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si. ACS Photonics 2018, 5, 699–704. [Google Scholar] [CrossRef]
- Tang, Y.J.; Feng, M.X.; Wen, P.Y.; Liu, J.X.; Wang, J.; Sun, X.J.; Sun, Q.; Zhang, S.M.; Sheng, X.; Ikeda, M.; et al. Degradation study of InGaN-based laser diodes grown on Si. J. Phys. D Appl. Phys. 2020, 53, 395103. [Google Scholar] [CrossRef]
- Feng, M.X.; Liu, J.X.; Sun, Q.; Yang, H. III-nitride semiconductor lasers grown on Si. Prog. Quantum Electron. 2021, 77, 100323. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Feng, M.X.; Li, Z.C.; Zhou, Y.; Sun, Q.; Liu, J.P.; Zhang, L.Q.; Li, D.Y.; Sun, X.J.; et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 2018, 7, 13. [Google Scholar] [CrossRef]
- Shah, A.P.; Laskar, M.R.; Azizur Rahman, A.; Gokhale, M.R.; Bhattacharya, A. Inductively coupled plasma–reactive ion etching of c- and a-plane AlGaN over the entire Al composition range: Effect of BCl3 pretreatment in Cl2/Ar plasma chemistry. J. Vac. Sci. Technol. 2013, 31, 061305. [Google Scholar] [CrossRef]
- Tavernier, P.R.; Margalith, T.; Coldren, L.A.; DenBaars, S.P.; Clarke, D.R. Chemical Mechanical Polishing of Gallium Nitride. Electrochem. Solid-State Lett. 2002, 5, G61–G64. [Google Scholar] [CrossRef]
- Sun, Q.; Suk Cho, Y.; Kong, B.H.; Koun Cho, H.; Shine Ko, T.; Yerino, C.D.; Lee, I.-H.; Han, J. N-face GaN growth on c-plane sapphire by metalorganic chemical vapor deposition. J. Cryst. Growth 2009, 311, 2948–2952. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Gu, H.; Zhang, Y.; Wang, W.; Xiong, R.; Xu, K. High-voltage vertical GaN-on-GaN Schottky barrier diode using fluorine ion implantation treatment. AIP Adv. 2019, 9, 055016. [Google Scholar] [CrossRef]
- Li, Z.H.; Yang, Z.J.; Yu, T.J.; Zhang, G.Y.; Feng, Y.C.; Niu, H.B. Properties of InGaN violet-LED structure. In Proceedings of the Fifth International Conference on Thin Film Physics and Applications, 31 May–2 June 2004; Volume 5774, pp. 381–384. [Google Scholar]
- Song, Y.K.; Diagne, M.; Zhou, H.; Nurmikko, A.V.; Schneider, R.P.; Takeuchi, T. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Appl. Phys. Lett. 2000, 77, 1744. [Google Scholar] [CrossRef]
- Tsai, C.L.; Yen, C.T.; Huang, W.J.; Xu, Z.F.; Ko, S.C. InGaN-Based Resonant-Cavity Light-Emitting Diodes Fabricated With a TaO2/SiO2 Distributed Bragg Reflector and Metal Reflector for Visible Light Communications. J. Disp. Technol. 2013, 9, 365–370. [Google Scholar] [CrossRef]
- Yu, G.; Wang, G.; Ishikawa, H.; Umeno, M.; Soga, T.; Egawa, T.; Watanabe, J.; Jimbo, T. Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method. Appl. Phys. Lett. 1997, 70, 3209–3211. [Google Scholar] [CrossRef]
- Schwarz, U.T.; Sturm, E.; Wegscheider, W.; Kümmler, V.; Lell, A.; Härle, V. Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers. Appl. Phys. Lett. 2003, 83, 4095–4097. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Sun, Q.; Liu, J.P.; Feng, M.X.; Li, Z.C.; Zhou, Y.; Zhang, L.Q.; Li, D.Y.; Zhang, S.M.; et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 2016, 10, 595–599. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Feng, M.; Tang, Y.; Wang, J.; Liu, J.; Sun, Q.; Gao, X.; Wang, Y.; Yang, H. GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si. Nanomaterials 2022, 12, 134. https://doi.org/10.3390/nano12010134
Chen W, Feng M, Tang Y, Wang J, Liu J, Sun Q, Gao X, Wang Y, Yang H. GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si. Nanomaterials. 2022; 12(1):134. https://doi.org/10.3390/nano12010134
Chicago/Turabian StyleChen, Wen, Meixin Feng, Yongjun Tang, Jian Wang, Jianxun Liu, Qian Sun, Xumin Gao, Yongjin Wang, and Hui Yang. 2022. "GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si" Nanomaterials 12, no. 1: 134. https://doi.org/10.3390/nano12010134
APA StyleChen, W., Feng, M., Tang, Y., Wang, J., Liu, J., Sun, Q., Gao, X., Wang, Y., & Yang, H. (2022). GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si. Nanomaterials, 12(1), 134. https://doi.org/10.3390/nano12010134