On-Surface Synthesis of sp-Carbon Nanostructures
Abstract
:1. Introduction
2. 0D sp-Carbon Nanostructures
3. 1D sp-Carbon Nanostructures
4. 2D sp-Carbon Nanostructures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Q.; Zhang, R.; Qiu, J.; Liu, R.; Xu, W. On-Surface Synthesis of Carbon Nanostructures. Adv. Mater. 2018, 30, e1705630. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Pignedoli, C.A.; Talirz, L.; Ruffieux, P.; Sode, H.; Liang, L.; Meunier, V.; Berger, R.; Li, R.; Feng, X.; et al. Graphene Nanoribbon Heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; Liu, X.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C.J.; et al. Bottom-Up Synthesis of Nitrogen-Doped Porous Graphene Nanoribbons. J. Am. Chem. Soc. 2020, 142, 12568–12573. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M.V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S.O.; Peña, D.; et al. Bottom-Up Synthesis of Multifunctional Nanoporous Graphene. Science 2018, 360, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.; Wang, C.; Liu, L.; Han, Y.; Zhao, J.; Zhu, J.; Kuttner, J.; Hilt, G.; Gottfried, J.M. Covalent, Organometallic, and Halogen-bonded Nanomeshes from Tetrabromo-Terphenyl by Surface-Assisted Synthesis on Cu(111). J. Phys. Chem. C 2014, 118, 13018–13025. [Google Scholar] [CrossRef]
- Sobola, D.; Ramazanov, S.; Konecny, M.; Orudzhev, F.; Kaspar, P.; Papez, N.; Knapek, A.; Potocek, M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials 2020, 13, 2402. [Google Scholar] [CrossRef]
- Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy—From Birth to Adolescence. Rev. Mod. Phys. 1987, 59, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Yu, X.; Liu, M.; Sun, Q.; Bao, M.; Zha, Z.; Pan, J.; Ma, H.; Ju, H.; Hu, S.; et al. Direct Formation of C–C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of Gem-Dibromomethyl Molecules. ACS Nano 2018, 12, 7959–7966. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, Q.; Groning, O.; Widmer, R.; Pignedoli, C.A.; Cai, L.; Yu, X.; Yuan, B.; Li, C.; Ju, H.; et al. On-Surface Synthesis and Characterization of Individual Polyacetylene Chains. Nat. Chem. 2019, 11, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef]
- Ruffieux, P.; Wang, S.; Yang, B.; Sanchez-Sanchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oteyza, D.G.; García-Lekue, A.; Vilas-Varela, M.; Merino-Díez, N.; Carbonell-Sanromà, E.; Corso, M.; Vasseur, G.; Rogero, C.; Guitian, E.; Pascual, J.I.; et al. Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons. ACS Nano 2016, 10, 9000–9008. [Google Scholar] [CrossRef] [Green Version]
- Gröning, O.; Wang, S.; Yao, X.; Pignedoli, C.A.; Borin Barin, G.; Daniels, C.; Cupo, A.; Meunier, V.; Feng, X.; Narita, A.; et al. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature 2018, 560, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; de Oteyza, D.G.; Pedramrazi, Z.; Chen, C.; Fischer, F.R.; Crommie, M.F. Tuning the band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors. ACS Nano 2013, 7, 6123–6128. [Google Scholar] [CrossRef]
- Rizzo, D.J.; Veber, G.; Cao, T.; Bronner, C.; Chen, T.; Zhao, F.; Rodriguez, H.; Louie, S.G.; Crommie, M.F.; Fischer, F.R. Topological Band Engineering of Graphene Nanoribbons. Nature 2018, 560, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Bieri, M.; Nguyen, M.T.; Gröning, O.; Cai, J.; Treier, M.; Aїt-Mansour, K.; Ruffieux, P.; Pignedoli, C.A.; Passerone, D.; Kastler, M.; et al. Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16676. [Google Scholar] [CrossRef] [Green Version]
- Di Giovannantonio, M.; Yao, X.; Eimre, K.; Urgel, J.I.; Ruffieux, P.; Pignedoli, C.A.; Müllen, K.; Fasel, R.; Narita, A. Large-Cavity Coronoids with Different Inner and Outer Rdge Structures. J. Am. Chem. Soc. 2020, 142, 12046–12050. [Google Scholar] [CrossRef]
- Fan, Q.; Martin-Jimenez, D.; Werner, S.; Ebeling, D.; Koehler, T.; Vollgraff, T.; Sundermeyer, J.; Hieringer, W.; Schirmeisen, A.; Gottfried, J.M. On-Surface Synthesis and Characterization of a Cycloarene: C108 Graphene Ring. J. Am. Chem. Soc. 2020, 142, 894–899. [Google Scholar] [CrossRef]
- Liu, M.; Liu, M.; She, L.; Zha, Z.; Pan, J.; Li, S.; Li, T.; He, Y.; Cai, Z.; Wang, J.; et al. Graphene-Like Nanoribbons Periodically Embedded with Four- and Eight-Membered Rings. Nat. Commun. 2017, 8, 14924. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Yan, L.; Tripp, M.W.; Krejci, O.; Dimosthenous, S.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P.; et al. Biphenylene Network: A Nonbenzenoid Carbon Allotrope. Science 2021, 372, 852–856. [Google Scholar] [CrossRef]
- Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C.K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J.M. Nanoribbons with Nonalternant Topology from Fusion of Polyazulene: Carbon Allotropes Beyond Graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, J.; Hou, S.; Wang, Y. Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. Nanomaterials 2020, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of Graphdiyne Nanoscale Films. Chem. Commun. 2010, 46, 3256–3258. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R. Extended Hückel Theory—v: Cumulenes, Polyenes, Polyacetylenes and Cn. Tetrahedron 1966, 22, 521–538. [Google Scholar] [CrossRef]
- Diederich, F.; Rubin, Y.; Knobler Carolyn, B.; Whetten Robert, L.; Schriver Kenneth, E.; Houk Kendall, N.; Li, Y. All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor. Science 1989, 245, 1088–1090. [Google Scholar] [CrossRef]
- Parasuk, V.; Almlof, J.; Feyereisen, M.W. The [18] All-Carbon Molecule: Cumulene or Polyacetylene? J. Am. Chem. Soc. 1991, 113, 1049–1050. [Google Scholar] [CrossRef]
- Liu, M.J.; Artyukhov, V.I.; Lee, H.; Xu, F.B.; Yakobson, B.I. Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope. ACS Nano 2013, 7, 10075–10082. [Google Scholar] [CrossRef] [Green Version]
- da Silva, C.A.B.; Nisioka, K.R.; Moura-Moreira, M.; Macedo, R.F.; Del Nero, J. Tunneling Rules for Electronic Transport in 1-D Systems. Mol. Phys. 2021, 119, e1976427. [Google Scholar] [CrossRef]
- Ramberger, B.; Kresse, G. New Insights into the 1D Carbon Chain through the RPA. Phys. Chem. Chem. Phys. 2021, 23, 5254–5260. [Google Scholar] [CrossRef] [PubMed]
- Bunz, U.H.F.; Rubin, Y.; Tobe, Y. Polyethynylated Cyclic π-Systems: Scaffoldings for Novel Two and Three-Dimensional Carbon Networks. Chem. Soc. Rev. 1999, 28, 107–119. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ding, Y.; Xie, L.; Zhang, C.; Tan, Q.; Xu, W. Dehydrogenative Homocoupling of Terminal Alkenes on Copper Surfaces: A Route to Dienes. Angew. Chem. Int. Ed. 2015, 54, 4549–4552. [Google Scholar] [CrossRef]
- Raghavachari, K.; Binkley, J.S. Structure, Stability, and Fragmentation of Small Carbon Clusters. J. Chem. Phys. 1987, 87, 2191–2197. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Clementi, E. Large Molecules in Carbon Vapor. J. Am. Chem. Soc. 1959, 81, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Torelli, T.; Mitas, L. Electron Correlation in C4N+2 Carbon Rings: Aromatic Versus Dimerized Structures. Phys. Rev. Lett. 2000, 85, 1702–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neiss, C.; Trushin, E.; Gorling, A. The Nature of One-Dimensional Carbon: Polyynic Versus Cumulenic. ChemPhysChem 2014, 15, 2497–2502. [Google Scholar] [CrossRef]
- McElvany, S.W.; Ross, M.M.; Goroff, N.S.; Diederich, F. Cyclocarbon Coalescence: Mechanisms for Tailor-Made Fullerene Formation. Science 1993, 259, 1594–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, K.; Scriven, L.M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H.L. An sp-Hybridized Molecular Carbon Allotrope, Cyclo[18]carbon. Science 2019, 365, 1299–1301. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, S.; Zhou, J.; Zha, Z.; Pan, J.; Li, X.; Zhang, J.; Liu, Z.; Li, Y.; Qiu, X. High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano 2018, 12, 12612–12618. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, H.; Chi, L. On-Surface Synthesis of Graphyne-Based Nanostructures. Adv. Mater. 2019, 31, 1804087. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ding, Y.; Ma, H.; Yuan, C.; Xu, W. Single-Molecule Insight into Wurtz Reactions on Metal Surfaces. Phys. Chem. Chem. Phys. 2016, 18, 2730–2735. [Google Scholar] [CrossRef]
- Kang, F.; Gao, W.; Cai, L.; Li, C.; Yuan, C.; Xu, W. Selective On-Surface Reactions of the Alkenyl Gem-Dibromide Group Directed by Substrate Lattices. J. Phys. Chem. C 2021, 125, 23840–23847. [Google Scholar] [CrossRef]
- Gao, H.Y.; Wagner, H.; Zhong, D.; Franke, J.H.; Studer, A.; Fuchs, H. Glaser Coupling at Metal Surfaces. Angew. Chem. Int. Ed. 2013, 52, 4024–4028. [Google Scholar] [CrossRef]
- Cirera, B.; Zhang, Y.Q.; Bjork, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J.V.; Klappenberger, F. Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating. Nano Lett. 2014, 14, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Tran, B.V.; Cai, L.; Ma, H.; Yu, X.; Yuan, C.; Stohr, M.; Xu, W. On-Surface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl Gem-Dibromides. Angew. Chem. Int. Ed. 2017, 56, 12165–12169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlicek, N.; Gawel, P.; Kohn, D.R.; Majzik, Z.; Xiong, Y.; Meyer, G.; Anderson, H.L.; Gross, L. Polyyne Formation via Skeletal Rearrangement Induced by Atomic Manipulation. Nat. Chem. 2018, 10, 853–858. [Google Scholar] [CrossRef]
- Sanchez-Grande, A.; de la Torre, B.; Santos, J.; Cirera, B.; Lauwaet, K.; Chutora, T.; Edalatmanesh, S.; Mutombo, P.; Rosen, J.; Zboril, R.; et al. On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers. Angew. Chem. Int. Ed. 2019, 58, 6559–6563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirera, B.; Sanchez-Grande, A.; de la Torre, B.; Santos, J.; Edalatmanesh, S.; Rodriguez-Sanchez, E.; Lauwaet, K.; Mallada, B.; Zboril, R.; Miranda, R.; et al. Tailoring Topological Order and π-Conjugation to Engineer Quasi-Metallic Polymers. Nat. Nanotechnol. 2020, 15, 437–443. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures. ACS Nano 2016, 10, 7023–7030. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; Bao, M.; Liu, M.; Pan, J.; Zha, Z.; Cai, L.; Ma, H.; Yuan, C.; Qiu, X.; et al. Direct Formation of C–C Triple-Bonded Structural Motifs by On-Surface Dehalogenative Homocouplings of Tribromomethyl-Substituted Arenes. Angew. Chem. Int. Ed. 2018, 57, 4035–4038. [Google Scholar] [CrossRef]
- Wang, T.; Huang, J.; Lv, H.; Fan, Q.; Feng, L.; Tao, Z.; Ju, H.; Wu, X.; Tait, S.L.; Zhu, J. Kinetic Strategies for the Formation of Graphyne Nanowires via Sonogashira Coupling on Ag(111). J. Am. Chem. Soc. 2018, 140, 13421–13428. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Cai, L.; Bao, M.; Sun, Q.; Ma, H.; Yuan, C.; Xu, W. On-Surface Synthesis of Graphyne Nanowires through Stepwise Reactions. Chem. Commun. 2020, 56, 1685–1688. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Wang, S.; Widmer, R.; Ju, H.; Zhu, J.; Li, L.; He, Y.; Ruffieux, P.; Fasel, R.; et al. Bottom-Up Synthesis of Metalated Carbyne. J. Am. Chem. Soc. 2016, 138, 1106–1109. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, X.; Lin, H.; Liu, M.; Cai, L.; Qiu, X.; Yang, D.; Fan, X.; Qiu, X.; Xu, W. Bond-Scission-Induced Structural Transformation from Cumulene to Diyne Moiety and Formation of Semiconducting Organometallic Polyyne. J. Am. Chem. Soc. 2020, 142, 8085–8089. [Google Scholar] [CrossRef]
- Hayatsu, R.; Scott, R.G.; Studier, M.H. Carbynes in meteorites: Detection, Low-Temperature Origin, and Implications for Interstellar Molecules. Science 1980, 209, 1515–1518. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, C.; Wang, L.; Li, Z.; Hu, A.; Tan, Q.; Xu, W. Surface-Assisted cis-trans Isomerization of an Alkene Molecule on Cu(110). Chem. Commun. 2014, 50, 1728–1730. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. The Stereoselective Synthesis of Dienes through Dehalogenative Homocoupling of Terminal Alkenyl Bromides on Cu(110). Chem. Commun. 2016, 52, 6009–6012. [Google Scholar] [CrossRef]
- Baughman, R.H.; Eckhardt, H.; Kertesz, M. Structure-Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2 and sp Atoms. J. Chem. Phys. 1987, 87, 6687–6699. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kepcija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A.C.; Allegretti, F.; Bjork, J.; Klyatskaya, S.; Klappenberger, F.; et al. Homo-Coupling of Terminal Alkynes on a Noble Metal Surface. Nat. Commun. 2012, 3, 1286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Paintner, T.; Hellwig, R.; Haag, F.; Allegretti, F.; Feulner, P.; Klyatskaya, S.; Ruben, M.; Seitsonen, A.P.; Barth, J.V.; et al. Synthesizing Highly Regular Single-Layer Alkynyl-Silver Networks at the Micrometer Scale via Gas-Mediated Surface Reaction. J. Am. Chem. Soc. 2019, 141, 5087–5091. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Kang, F.; Gao, W.; Zhou, Z.; Xu, W. On-Surface Synthesis of sp-Carbon Nanostructures. Nanomaterials 2022, 12, 137. https://doi.org/10.3390/nano12010137
Shang L, Kang F, Gao W, Zhou Z, Xu W. On-Surface Synthesis of sp-Carbon Nanostructures. Nanomaterials. 2022; 12(1):137. https://doi.org/10.3390/nano12010137
Chicago/Turabian StyleShang, Lina, Faming Kang, Wenze Gao, Zheng Zhou, and Wei Xu. 2022. "On-Surface Synthesis of sp-Carbon Nanostructures" Nanomaterials 12, no. 1: 137. https://doi.org/10.3390/nano12010137
APA StyleShang, L., Kang, F., Gao, W., Zhou, Z., & Xu, W. (2022). On-Surface Synthesis of sp-Carbon Nanostructures. Nanomaterials, 12(1), 137. https://doi.org/10.3390/nano12010137