Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Characterization
2.3. Cell Culture
2.4. Dissolution
2.4.1. Static Dissolution
2.4.2. Dynamic Dissolution and Transformation
2.5. Abiotic Reactivity (FRAS Assay)
2.6. Cytotoxicity, Bioavailability, and Intracellular Distribution
3. Results
3.1. Physicochemical Characterization
3.2. Dissolution and Transformation
3.3. Abiotic Reactivity
3.4. Cell Viability and Bioavailability
3.4.1. Cell Viability
3.4.2. Bioavailability
3.4.3. Intracellular Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAF | Artificial Alveolar Fluid |
ALF | Artificial Lysosomal Fluid |
BSA | Bovine serum albumin |
DLS | Dynamic light scattering |
dTHP-1 | Differentiated monocytic THP-1 cells to macrophage-like cells |
FRAS | Ferric Reduction Ability of Serum |
GF-AAS | Graphite Furnace Atomic Absorption Spectrometry |
ICP-MS | Inductively Coupled Plasma-Mass Spectrometry |
NP | Nanoparticle |
NW | Nanowire |
PDI | Polydispersity index |
PSF | Phagolysosomal Simulant Fluid |
RCC | Relative Cell Count |
ROS | Reactive oxygen species |
REM | Raster electron microscopy |
TEM | Transmission electron microscopy |
References
- Bapat, R.A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 91, 881–898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, X.; Chen, Y.; Lin, H. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym. 2009, 10, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Nekooei, S. Application of a Modified CuO Nanoparticles Carbon Paste Electrode for Simultaneous Determination of Isoperenaline, Acetaminophen and N-acetyl-L-cysteine. Electroanalysis 2016, 28, 645–653. [Google Scholar] [CrossRef]
- Xiong, X.; Zou, C.-L.; Ren, X.-F.; Liu, A.-P.; Ye, Y.-X.; Sun, F.-W.; Guo, G.-C. Silver nanowires for photonics applications. Laser Photonics Rev. 2013, 7, 901–919. [Google Scholar] [CrossRef]
- Reich, D.H.; Tanase, M.; Hultgren, A.; Bauer, L.A.; Chen, C.S.; Meyer, G.J. Biological applications of multifunctional magnetic nanowires (invited). J. Appl. Phys. 2003, 93, 7275–7280. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.; Wijnhoven, S.W.; Haase, A. Nanomaterial exposures for worker, consumer and the general public. NanoImpact 2018, 10, 11–25. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Arts, J.H.E.; Hadi, M.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. RTP 2015, 71, S1–S27. [Google Scholar] [CrossRef] [Green Version]
- Arts, J.H.E.; Hadi, M.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; Warheit, D.; et al. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul. Toxicol. Pharmacol. RTP 2014, 70, 492–506. [Google Scholar] [CrossRef] [Green Version]
- Oomen, A.G.; Bleeker, E.A.J.; Bos, P.M.J.; van Broekhuizen, F.; Gottardo, S.; Groenewold, M.; Hristozov, D.; Hund-Rinke, K.; Irfan, M.-A.; Marcomini, A.; et al. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials. Int. J. Environ. Res. Public Health 2015, 12, 13415–13434. [Google Scholar] [CrossRef] [Green Version]
- Delaval, M.; Wohlleben, W.; Landsiedel, R.; Baeza-Squiban, A.; Boland, S. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: Assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch. Toxicol. 2017, 91, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Cronholm, P.; Karlsson, H.L.; Hedberg, J.; Lowe, T.A.; Winnberg, L.; Elihn, K.; Wallinder, I.O.; Möller, L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small (Weinh. Bergstr. Ger.) 2013, 9, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Strauch, B.M.; Hubele, W.; Hartwig, A. Impact of Endocytosis and Lysosomal Acidification on the Toxicity of Copper Oxide Nano- and Microsized Particles: Uptake and Gene Expression Related to Oxidative Stress and the DNA Damage Response. Nanomaterials 2020, 10, 679. [Google Scholar] [CrossRef] [Green Version]
- Semisch, A.; Ohle, J.; Witt, B.; Hartwig, A. Cytotoxicity and genotoxicity of nano—And microparticulate copper oxide: Role of solubility and intracellular bioavailability. Part Fibre Toxicol. 2014, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, I.-L.; Hsieh, Y.-K.; Wang, C.-F.; Chen, I.-C.; Huang, Y.-J. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 2015, 49, 3813–3821. [Google Scholar] [CrossRef]
- Strauch, B.M.; Niemand, R.K.; Winkelbeiner, N.L.; Hartwig, A. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: Interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells. Part Fibre Toxicol. 2017, 14, 28. [Google Scholar] [CrossRef]
- Latvala, S.; Hedberg, J.; Di Bucchianico, S.; Möller, L.; Odnevall Wallinder, I.; Elihn, K.; Karlsson, H.L. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles. PLoS ONE 2016, 11, e0159684. [Google Scholar]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peijnenburg, W.J.G.M.; Ruggiero, E.; Boyles, M.; Murphy, F.; Stone, V.; Elam, D.A.; Werle, K.; Wohlleben, W. A Method to Assess the Relevance of Nanomaterial Dissolution During Reactivity Testing. Materials 2020, 13, 2235. [Google Scholar] [CrossRef]
- Poland, C.A.; Byrne, F.; Cho, W.-S.; Prina-Mello, A.; Murphy, F.A.; Davies, G.L.; Coey, J.M.D.; Gounko, Y.; Duffin, R.; Volkov, Y.; et al. Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology 2012, 6, 899–911. [Google Scholar] [CrossRef]
- Singh, M.; Movia, D.; Mahfoud, O.K.; Volkov, Y.; Prina-Mello, A. Silver nanowires as prospective carriers for drug delivery in cancer treatment: An in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. Eur. J. Nanomed. 2013, 5, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.F.; Seiffert, J.; Chen, S.; Theodorou, I.G.; Goode, A.E.; Leo, B.F.; McGilvery, C.M.; Hussain, F.; Wiegman, C.; Rossios, C.; et al. Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS Nano 2017, 11, 2652–2664. [Google Scholar] [CrossRef]
- Fizeșan, I.; Cambier, S.; Moschini, E.; Chary, A.; Nelissen, I.; Ziebel, J.; Audinot, J.-N.; Wirtz, T.; Kruszewski, M.; Pop, A.; et al. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part Fibre Toxicol. 2019, 16, 14. [Google Scholar] [CrossRef]
- Chen, S.; Goode, A.E.; Sweeney, S.; Theodorou, I.G.; Thorley, A.J.; Ruenraroengsak, P.; Chang, Y.; Gow, A.; Schwander, S.; Skepper, J.; et al. Sulfidation of silver nanowires inside human alveolar epithelial cells: A potential detoxification mechanism. Nanoscale 2013, 5, 9839–9847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Project Sustainable Nanotechnologies (SUN). Deliverable D 1.4 Report on Characterization of Pristine Nanomaterials for (Eco)Toxicological Testing; EU FP-7; SUN: Santa Clara, CA, USA, 2017; pp. 1–66. [Google Scholar]
- Keller, J.G.; Quevedo, D.F.; Faccani, L.; Costa, A.L.; Landsiedel, R.; Werle, K.; Wohlleben, W. Dosimetry in vitro—Exploring the sensitivity of deposited dose predictions vs. affinity, polydispersity, freeze-thawing, and analytical methods. Nanotoxicology 2021, 15, 21–34. [Google Scholar] [CrossRef] [PubMed]
- DeLoid, G.; Cohen, J.M.; Darrah, T.; Derk, R.; Rojanasakul, L.; Pyrgiotakis, G.; Wohlleben, W.; Demokritou, P. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 2014, 5, 3514. [Google Scholar] [CrossRef] [PubMed]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Pirela, S.V.; Pal, A.; Liu, J.; Srebric, J.; Demokritou, P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol. 2015, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 2017, 12, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Giannakou, C.; Peijnenburg, W.J.G.M.; Vermeulen, J.; van Loveren, H.; Park, M.V.D.Z. Simple in vitro models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology 2016, 10, 770–779. [Google Scholar] [CrossRef]
- International Organisation for Standardization. ISO/TR19057: Nanotechnologies—Use and Application of Acellular In Vitro Tests and Methodologies to Assess Nanomaterial Biodurability; International Organisation for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Wohlleben, W.; Waindok, H.; Daumann, B.; Werle, K.; Drum, M.; Egenolf, H. Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder. Part Fibre Toxicol. 2017, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Gandon, A.; Werle, K.; Neubauer, N.; Wohlleben, W. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol. J. Phys. Conf. Ser. 2017, 838, 12033. [Google Scholar] [CrossRef] [Green Version]
- European Commission; Joint Research Centre; Institute for Health and Consumer Protection. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico Chemical Properties; Publications Office of the European Union: Luxembourg, 2014; p. 77. [Google Scholar]
- Keller, J.G.; Graham, U.M.; Koltermann-Jülly, J.; Gelein, R.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Oberdörster, G.; Elder, A.; Wohlleben, W. Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: The case of barium sulfate. Sci. Rep. 2020, 10, 458. [Google Scholar] [CrossRef]
- Koltermann-Jülly, J.; Keller, J.G.; Vennemann, A.; Werle, K.; Müller, P.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Wohlleben, W. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: Grouping by biodissolution and transformation. NanoImpact 2018, 12, 29–41. [Google Scholar] [CrossRef]
- Keller, J.G.; Peijnenburg, W.; Werle, K.; Landsiedel, R.; Wohlleben, W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials 2020, 10, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahl, A.; Hellack, B.; Wiemann, M.; Giusti, A.; Werle, K.; Haase, A.; Wohlleben, W. Nanomaterial categorization by surface reactivity: A case study comparing 35 materials with four different test methods. NanoImpact 2020, 19, 100234. [Google Scholar] [CrossRef]
- Remzova, M.; Zouzelka, R.; Brzicova, T.; Vrbova, K.; Pinkas, D.; Rőssner, P.; Topinka, J.; Rathousky, J. Toxicity of TiO2, ZnO, and SiO2 Nanoparticles in Human Lung Cells: Safe-by-Design Development of Construction Materials. Nanomaterials 2019, 9, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, L.; Camatini, M.; Gualtieri, M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol. Lett. 2014, 226, 28–34. [Google Scholar] [CrossRef]
- Felix, L.P.; Perez, J.E.; Contreras, M.F.; Ravasi, T.; Kosel, J. Cytotoxic effects of nickel nanowires in human fibroblasts. Toxicol. Rep. 2016, 3, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.E.; Contreras, M.F.; Vilanova, E.; Felix, L.P.; Margineanu, M.B.; Luongo, G.; Porter, A.E.; Dunlop, I.E.; Ravasi, T.; Kosel, J. Cytotoxicity and intracellular dissolution of nickel nanowires. Nanotoxicology 2016, 10, 871–880. [Google Scholar] [CrossRef]
- Byrne, F.; Prina-Mello, A.; Whelan, A.; Mohamed, B.M.; Davies, A.; Gun’ko, Y.K.; Coey, J.; Volkov, Y. High content analysis of the biocompatibility of nickel nanowires. J. Magn. Magn. Mater. 2009, 321, 1341–1345. [Google Scholar] [CrossRef]
- Schinwald, A.; Donaldson, K. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part Fibre Toxicol. 2012, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwerdtle, T.; Hartwig, A. Bioavailability and genotoxicity of soluble and particulate nickel compounds in cultured human lung cells. Mat.-Wiss. U. Werkstofftech. 2006, 37, 521–525. [Google Scholar] [CrossRef]
- Theodorou, I.G.; Müller, K.H.; Chen, S.; Goode, A.E.; Yufit, V.; Ryan, M.P.; Porter, A.E. Silver Nanowire Particle Reactivity with Human Monocyte-Derived Macrophage Cells: Intracellular Availability of Silver Governs Their Cytotoxicity. ACS Biomater. Sci. Eng. 2017, 3, 2336–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Miclăuş, T.; Wang, L.; Foldbjerg, R.; Sutherland, D.S.; Autrup, H.; Chen, C.; Beer, C. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity. Nanotoxicology 2015, 9, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Limbach, L.K.; Wick, P.; Manser, P.; Grass, R.N.; Bruinink, A.; Stark, W.J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
Material | Form | Source | Name/Item Number |
---|---|---|---|
Ag | NP | RAS AG | Agpure W10 (NM300K) |
NW | RAS AG | ECOS HC | |
CeO2 | NP | JRC | NM212 |
Cu | NP | Io-li-tec | NM-0016-HP |
NW | PlasmaChem | PL-CuW50 | |
CuO | NP | BASF | CUO_1_NP_PROD * |
Ni | NP | Sigma-Aldrich | 577995 |
NW | PlasmaChem | PL-NiW200 | |
TiO2 | NP | JRC | NM105 |
NW | PlasmaChem | PL-TiOW50 |
Cu NP | CuO NP | Ni NP | TiO2 NP (NM105) | CeO2 NP (NM212) | Ag NP (NM300K) | |
---|---|---|---|---|---|---|
dp (nm) | 55.2 ± 1.5 | 17.1 ± 0.4 | 21.4 ± 0.1 | 23.7 ± 0.5 | 21.5 ± 0.3 | 15.5 ± 0.04 |
dh (nm) | 308.2 ± 40.3 | 160.3 ± 42.1 | 388.0 ± 33.2 | 165.8 ± 14.2 | 187.0 ± 7.3 | 72.4 ± 10.0 |
PDI | 0.23 ± 0.07 | 0.48 ± 0.05 | 0.67 ± 0.02 | 0.14 ± 0.01 | 0.20 ± 0.02 | 0.31 ± 0.06 |
ζ-potential (mV) | −15.3 ± 0.02 | −14.8 ± 0.2 | −15.7 ± 0.2 | −14.8 ± 0.2 | −15 ± 0.6 | −11.2 ± 2.1 |
SSA (m2/g) | 10.7 ± 0.6 | 47 # | 6.4 ± 0.3 | 46.2 * | 27 * | N/A ** |
effective density (g/cm3) | 1.78 ± 0.02 | 1.98 ± 0.03 | 2.54 ± 9.14 | 1.38 ± 0.06 | 1.97 ± 0.14 | 2.07 ± 0.14 |
fraction of deposited dose in 24 h (%) | 64 | 56 | 90 | 22 | 53 | 27 |
purity (% wt) | 98.6 ± 0.4 | 98.7 ± 0.81 | 98.7 ± 0.86 | 91.5 ± 061 | 98.5 | 99.3 ± 0.08 |
Length (µm) | Width (nm) | ζ-Potential (mV) | SSA (nm2/g) | Purity (% wt) | |
---|---|---|---|---|---|
Cu NW | 6.3 ± 0.4 | 300 ± 6 | −14.1 | 1.49 | >99.5 # |
Ni NW | 9.97 ± 0.29 | 280 ± 6 | −14.5 | 1.61 | 99.1 |
Ag NW | 10.6 ± 0.28 | 110 ± 1.6 | −4.1 ± 0.1 | 3.47 | 99.1 ± 0.65 |
TiO2 NW | 7.3 ± 0.2 | 0.87 ± 0.03 | n.a. | n.a. | n.a. |
Material and Form | Static Dissolution (% Dissolved) | Dynamic Dissolution (% Dissolved) | ||
---|---|---|---|---|
AAF | ALF | PSF | ||
Ag | NP (NM 300K) | 0.5 ± 0.1 | 0.2 ± 0.0 | 1.6 |
NW | 0.5 ± 0.2 | 0.2 ± 0.0 | 11 | |
CeO2 | NP (NM 212) | 0.001 | 0.021 | 0.3 |
Cu | NP | 12.0 ± 4.7 | 63.8 ± 3.4 | 45.5 |
NW | 6.0 ± 2.7 | 57 ± 3.1 | 35 | |
CuO | NP | 3.9 ± 1.8 | 57.2 ± 5.1 | 97.3 |
Ni | NP | 3.7 ± 0.4 | 56.1 ± 15.5 | 63.2 |
NW | 0.9 ± 0.6 | 35.5 ± 10.1 | 94.4 | |
TiO2 | NP (NM 105) | 0.002 | 0.022 | 0.3 |
NW | 0.001 | 0.021 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wall, J.; Seleci, D.A.; Schworm, F.; Neuberger, R.; Link, M.; Hufnagel, M.; Schumacher, P.; Schulz, F.; Heinrich, U.; Wohlleben, W.; et al. Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity. Nanomaterials 2022, 12, 147. https://doi.org/10.3390/nano12010147
Wall J, Seleci DA, Schworm F, Neuberger R, Link M, Hufnagel M, Schumacher P, Schulz F, Heinrich U, Wohlleben W, et al. Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity. Nanomaterials. 2022; 12(1):147. https://doi.org/10.3390/nano12010147
Chicago/Turabian StyleWall, Johanna, Didem Ag Seleci, Feranika Schworm, Ronja Neuberger, Martin Link, Matthias Hufnagel, Paul Schumacher, Florian Schulz, Uwe Heinrich, Wendel Wohlleben, and et al. 2022. "Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity" Nanomaterials 12, no. 1: 147. https://doi.org/10.3390/nano12010147
APA StyleWall, J., Seleci, D. A., Schworm, F., Neuberger, R., Link, M., Hufnagel, M., Schumacher, P., Schulz, F., Heinrich, U., Wohlleben, W., & Hartwig, A. (2022). Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity. Nanomaterials, 12(1), 147. https://doi.org/10.3390/nano12010147