Current Understanding of Water Properties inside Carbon Nanotubes
Abstract
:1. Introduction
2. Carbon Nanotubes: Synthesis and Characteristics
2.1. Synthesis
2.2. Properties of CNTs
3. Methods for Studying the Properties of Water in CNTs
3.1. Nuclear Magnetic Resonance
3.2. Molecular Dynamics Simulations
4. Intercalation of Water in CNTs
The Thermodynamical Perspective of Wetting CNTs
5. Why Water in CNTs Does Not Behave like Bulk: Nanoconfinement and Hydrophobicity of the CNTs
5.1. Effects Induced by Nanoconfinement and Water-Wall Interactions
5.2. Structure of Water in CNTs
5.2.1. Water in Sub-Nanometer CNTs: Central Water-Chain Moving in Single-File
5.2.2. Water in CNTs of Diameter between 1 nm and 1.2 nm: Tubular Water Structures
5.2.3. CNT Diameters between 1.2 and : Co-Existence of Central Water-Chain, Surrounded by Several Water-Tubes
5.2.4. Above CNT Widths of 4 nm: Internal Water Approaches Its Bulk Properties
6. Hydrogen Bond Network
6.1. Pressure and Temperature Dependence of the HB-Network
6.2. HB-Network’s Structure versus the CNT’s Diameter
6.3. Discrepancies between Studies of the HB-Network
6.4. Effects Induced by the HB-Network’s Structure
7. Water Diffusion in CNTs
7.1. Diffusion: Short Outline
7.2. Methods for Studying Diffusivity
7.3. Diffusion of Water in CNTs
7.3.1. Type of Motion
7.3.2. Diffusion Coefficient versus the CNT’s Width
7.3.3. Diffusion Coefficient of Individual Water Structures
7.3.4. Discrepancies between Reported Diffusivities
7.4. Water Flow in CNTs
8. Exotic Ice Phases and Suppressed Water-Ice Transition Temperature in CNTs
8.1. Ice Structures under Low and High Pressure
8.2. NMR Studies of the Water-Ice Transition Temperature
8.3. Variation of T with CNT Width
9. Effect of CNT Impurities, Defects and Functionalization
9.1. Water in CNTs under Non-Standard Conditions
9.2. Functionalized CNTs
9.2.1. Applications of f-CNTs
9.2.2. Types of f-CNTs
9.2.3. Water in f-CNTs
10. Conclusions and Future Research Avenues
10.1. Conclusions
10.2. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A. Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. J. Phys. Chem. C 2007, 111, 8268–8277. [Google Scholar] [CrossRef]
- Hassan, J. Analysis of 2H NMR spectra of water molecules on the surface of nano-silica material MCM-41: Deconvolution of the signal into a Lorentzian and a powder pattern line shapes. Phys. B Condens. Matter 2012, 407, 179–183. [Google Scholar] [CrossRef]
- Köfinger, J.; Hummer, G.; Dellago, C. Single-file water in nanopores. Phys. Chem. Chem. Phys. 2011, 13, 15403–15417. [Google Scholar] [CrossRef] [Green Version]
- Kalra, A.; Garde, S.; Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA 2003, 100, 10175–10180. [Google Scholar] [CrossRef] [Green Version]
- Fornasiero, F.; Park, H.G.; Holt, J.K.; Stadermann, M.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250–17255. [Google Scholar] [CrossRef] [Green Version]
- Tajkhorshid, E.; Nollert, P.; Jensen, M.O.; Miercke, L.J.W.; O’Connell, J.; Stroud, R.M.; Schulten, K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002, 296, 525–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, H.; Han, B.; Lee, J.; Walian, P.; Jap, B. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001, 414, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Mitsuoka, K.; Hiral, T.; Walz, T.; Agre, P.; Heymann, J.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Hensen, E.J.M.; Smit, B. Why Clays Swell. J. Phys. Chem. B 2002, 106, 12664–12667. [Google Scholar] [CrossRef] [Green Version]
- Kukla, V.; Kornatowski, J.; Demuth, D.; Girnus, I.; Pfeifer, H.; Rees, L.V.C.; Schunk, S.; Unger, K.K.; Kärger, J. NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites. Science 1996, 272, 702–704. [Google Scholar] [CrossRef]
- Hassan, J.; Diamantopoulos, G.; Homouz, D.; Papavassiliou, G. Water inside carbon nanotubes: Structure and dynamics. Nanotechnol. Rev. 2016, 5, 341–354. [Google Scholar] [CrossRef]
- Liu, H.; He, J.; Tang, J.; Liu, H.; Pang, P.; Cao, D.; Krstic, P.; Joseph, S.; Lindsay, S.; Nuckolls, C. Translocation of Single-Stranded DNA through Single-Walled Carbon Nanotubes. Science 2010, 327, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, C.; Zhao, K.; Li, J.; Wu, H.C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 2013, 4, 2989. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T.; Jung, Y.; Jung, K.; Park, J.; Lee, D.M.; Jeong, H.S.; Hwang, J.Y.; Park, C.R.; Lee, K.H.; et al. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale 2016, 8, 18972–18979. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Nag, A.; Chandra Mukhopadhyay, S.; Xu, Y. Carbon nanotubes and its gas-sensing applications: A review. Sens. Actuators A Phys. 2019, 291, 107–143. [Google Scholar] [CrossRef]
- Arunachalam, S.; Gupta, A.A.; Izquierdo, R.; Nabki, F. Suspended Carbon Nanotubes for Humidity Sensing. Sensors 2018, 18, 1655. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xie, L.; Hameed, S.; Wang, C.; Ying, Y. Mechanisms and applications of carbon nanotubes in terahertz devices: A review. Carbon 2018, 132, 42–58. [Google Scholar] [CrossRef]
- Jeon, I.; Xiang, R.; Shawky, A.; Matsuo, Y.; Maruyama, S. Single-Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications. Adv. Energy Mater. 2019, 9, 1801312. [Google Scholar] [CrossRef]
- Talib, E.; Azam, M.A. An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device. J. Mater. Res. 2016, 31, 1972–1982. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge. Fullerenes Nanotub. Carbon Nanostruct. 2017, 25, 355–358. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Carbon nanotubes: A potential material for energy conversion and storage. Prog. Energy Combust. Sci. 2018, 64, 219–253. [Google Scholar] [CrossRef]
- Mashl, R.J.; Joseph, S.; Aluru, N.R.; Jakobsson, E. Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes. Nano Lett. 2003, 3, 589–592. [Google Scholar] [CrossRef]
- Puett, C.; Inscoe, C.; Hartman, A.; Calliste, J.; Franceschi, D.K.; Lu, J.; Zhou, O.; Lee, Y.Z. An update on carbon nanotube-enabled X-ray sources for biomedical imaging. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1475. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Dai, R.X.; Xin, Y.; Sun, Y.L.; Li, X.; Yu, Y.X.; Xiang, L.; Xie, D.; Wang, S.D.; Ren, T.L. Efficient and Reversible Electron Doping of Semiconductor-Enriched Single-Walled Carbon Nanotubes by Using Decamethylcobaltocene. Sci. Rep. 2017, 7, 6751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109. [Google Scholar] [CrossRef]
- Yang, T.; Lin, H.; Lin, K.T.; Jia, B. Carbon-based absorbers for solar evaporation: Steam generation and beyond. Sustain. Mater. Technol. 2020, 25, e00182. [Google Scholar] [CrossRef]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.U.H.A.; Mian, S.A.; Ali, G. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef] [Green Version]
- Foroutan, M.; Fatemi, S.M.; Esmaeilian, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur. Phys. J. E 2017, 40, 19. [Google Scholar] [CrossRef] [PubMed]
- Chiavazzo, E.; Fasano, M.; Asinari, P.; Decuzzi, P. Scaling behaviour for the water transport in nanoconfined geometries. Nat. Commun. 2014, 5, 3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett. 2011, 6, 555. [Google Scholar] [CrossRef] [Green Version]
- Ketabi, S.; Rahmani, L. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study. Mater. Sci. Eng. C 2017, 73, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Bourgognon, M.; Wang, J.T.W.; Al-Jamal, K.T. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release 2016, 241, 200–219. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.F.; Nielsen, S.O.; Moore, P.B.; Klein, M.L. Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 2004, 101, 4431–4434. [Google Scholar] [CrossRef] [Green Version]
- Chua, M.; Chui, C.K.; Chng, C.B.; Lau, D. Carbon Nanotube-Based Artificial Tracheal Prosthesis: Carbon nanocomposite implants for patient-specific ENT care. IEEE Nanotechnol. Mag. 2013, 7, 27–31. [Google Scholar] [CrossRef]
- Reiter, G.F.; Deb, A.; Sakurai, Y.; Itou, M.; Krishnan, V.G.; Paddison, S.J. Anomalous Ground State of the Electrons in Nanoconfined Water. Phys. Rev. Lett. 2013, 111, 036803. [Google Scholar] [CrossRef] [Green Version]
- Reiter, G.F.; Deb, A.; Sakurai, Y.; Itou, M.; Kolesnikov, A.I. Quantum Coherence and Temperature Dependence of the Anomalous State of Nanoconfined Water in Carbon Nanotubes. J. Phys. Chem. Lett. 2016, 7, 4433–4437. [Google Scholar] [CrossRef]
- Bonifazi, D.; Nacci, C.; Marega, R.; Campidelli, S.; Ceballos, G.; Modesti, S.; Meneghetti, M.; Prato, M. Microscopic and Spectroscopic Characterization of Paintbrush-like Single-walled Carbon Nanotubes. Nano Lett. 2006, 6, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Libera, J.A.; Yoshimura, M. Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 2000, 15, 2591–2594. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Libera, J.A.; Güvenç-Yazicioglu, A.; Megaridis, C.M. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1021–1023. [Google Scholar] [CrossRef]
- Naguib, N.; Ye, H.H.; Gogotsi, Y.; Yazicioglu, A.G.; Megaridis, C.M.; Yoshimura, M. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 2004, 4, 2237. [Google Scholar] [CrossRef]
- Gogotsi, Y. TEM Study of Water in Carbon Nanotubes. JEOL News 2004, 39, 38–43. [Google Scholar]
- Chen, J. Solution Properties of Single-Walled Carbon Nanotubes. Science 1998, 282, 95–98. [Google Scholar] [CrossRef]
- Mondal, S.; Bagchi, B. Water in Carbon Nanotubes: Pronounced Anisotropy in Dielectric Dispersion and Its Microscopic Origin. J. Phys. Chem. Lett. 2019, 10, 6287–6292. [Google Scholar] [CrossRef] [Green Version]
- Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur. Phys. J. B—Condens. Matter Complex Syst. 2002, 28, 223–230. [Google Scholar] [CrossRef]
- Campidelli, S.; Meneghetti, M.; Prato, M. Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes via Covalent Functionalization. Small 2007, 3, 1672–1676. [Google Scholar] [CrossRef]
- Landi, B.J.; Cress, C.D.; Evans, C.M.; Raffaelle, R.P. Thermal Oxidation Profiling of Single-Walled Carbon Nanotubes. Chem. Mater. 2005, 17, 6819–6834. [Google Scholar] [CrossRef]
- Sliwinska-Bartkowiak, M.; Jazdzewska, M.; Huang, L.L.; Gubbins, K.E. Melting behavior of water in cylindrical pores: Carbon nanotubes and silica glasses. Phys. Chem. Chem. Phys. 2008, 10, 4909–4919. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ramanathan, K.V.; Sood, A.K. Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. (EPL) 2004, 65, 678–684. [Google Scholar] [CrossRef]
- Pérez-Cabero, M.; Rodríguez-Ramos, I.; Overweg, A.; Sobrados, I.; Sanz, J.; Guerrero-Ruíz, A. 13C MAS-NMR study of carbon nanotubes grown by catalytic decomposition of acetylene on Fe–silica catalysts. Carbon 2005, 43, 2631–2634. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Yan, Y.; Engtrakul, C.; Parilla, P.A.; Jones, K.; Gennett, T.; Dillon, A.C.; Heben, M.J. Synthesis and Characterization of Boron-Doped Single-Wall Carbon Nanotubes Produced by the Laser Vaporization Technique. Chem. Mater. 2006, 18, 2558–2566. [Google Scholar] [CrossRef]
- Sekhaneh, W.; Kotecha, M.; Dettlaff-Weglikowska, U.; Veeman, W.S. High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem. Phys. Lett. 2006, 428, 143–147. [Google Scholar] [CrossRef]
- Matsuda, K.; Hibi, T.; Kadowaki, H.; Kataura, H.; Maniwa, Y. Water dynamics inside single-wall carbon nanotubes: NMR observations. Phys. Rev. B 2006, 74, 073415. [Google Scholar] [CrossRef]
- Mao, S.; Kleinhammes, A.; Wu, Y. NMR study of water adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 421, 513–517. [Google Scholar] [CrossRef]
- Wang, H.J.; Xi, X.K.; Kleinhammes, A.; Wu, Y. Temperature-Induced Hydrophobic-Hydrophilic Transition Observed by Water Adsorption. Science 2008, 322, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Herberg, J.L.; Mogilevsky, G.; Wang, H.J.; Stadermann, M.; Holt, J.K.; Wu, Y. Identification of endohedral water in single-walled carbon nanotubes by (1)H NMR. Nano Lett. 2008, 8, 1902–1905. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Schwegler, E.; Galli, G. Water Confined in Carbon Nanotubes: Magnetic Response and Proton Chemical Shieldings. J. Phys. Chem. C 2009, 113, 8696–8700. [Google Scholar] [CrossRef]
- Das, A.; Jayanthi, S.; Deepak, H.S.M.V.; Ramanathan, K.V.; Kumar, A.; Dasgupta, C.; Sood, A.K. Single-File Diffusion of Confined Water Inside SWNTs: An NMR Study. ACS Nano 2010, 4, 1687–1695. [Google Scholar] [CrossRef]
- Abou-Hamad, E.; Babaa, M.R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, J.M.; Goze-Bac, C.; Wågberg, T. Structural properties of carbon nanotubes derived from 13C NMR. Phys. Rev. B 2011, 84, 165417. [Google Scholar] [CrossRef]
- Kyakuno, H.; Matsuda, K.; Yahiro, H.; Inami, Y.; Fukuoka, T.; Miyata, Y.; Yanagi, K.; Maniwa, Y.; Kataura, H.; Saito, T.; et al. Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length. J. Chem. Phys. 2011, 134, 244501. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, X.; Zhang, S.; Han, X.; Bao, X. Diffusion of Water Inside Carbon Nanotubes Studied by Pulsed Field Gradient NMR Spectroscopy. Langmuir 2014, 30, 8036–8045. [Google Scholar] [CrossRef]
- Ohba, T.; Ideta, K.; Hata, K.; Yoon, S.H.; Miyawaki, J.; Hata, K. Fast Water Relaxation through One-Dimensional Channels by Rapid Energy Transfer. ChemPhysChem 2016, 17, 3409–3415. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Diamantopoulos, G.; Gkoura, L.; Karagianni, M.; Alhassan, S.; Kumar, S.V.; Katsiotis, M.S.; Karagiannis, T.; Fardis, M.; Panopoulos, N.; et al. Ultrafast Stratified Diffusion of Water Inside Carbon Nanotubes; Direct Experimental Evidence with 2D D–T2 NMR Spectroscopy. J. Phys. Chem. C 2018, 122, 10600–10606. [Google Scholar] [CrossRef] [Green Version]
- Gkoura, L.; Diamantopoulos, G.; Fardis, M.; Homouz, D.; Alhassan, S.; Beazi-Katsioti, M.; Karagianni, M.; Anastasiou, A.; Romanos, G.; Hassan, J.; et al. The peculiar size and temperature dependence of water diffusion in carbon nanotubes studied with 2D NMR diffusion–relaxation D–T2eff spectroscopy. Biomicrofluidics 2020, 14, 034114. [Google Scholar] [CrossRef]
- Hummer, G.; Rasaiah, J.C.; Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190. [Google Scholar] [CrossRef]
- Waghe, A.; Rasaiah, J.C.; Hummer, G. Filling and emptying kinetics of carbon nanotubes in water. J. Chem. Phys. 2002, 117, 10789–10795. [Google Scholar] [CrossRef] [Green Version]
- Burnham, C.J.; Xantheas, S.S. Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface. J. Chem. Phys. 2002, 116, 5115–5124. [Google Scholar] [CrossRef]
- Bai, J.; Su, C.R.; Parra, R.D.; Zeng, X.C.; Tanaka, H.; Koga, K.; Li, J.M. Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes. J. Chem. Phys. 2003, 118, 3913–3916. [Google Scholar] [CrossRef] [Green Version]
- Kotsalis, E.; Walther, J.; Koumoutsakos, P. Multiphase water flow inside carbon nanotubes. Int. J. Multiph. Flow 2004, 30, 995–1010. [Google Scholar] [CrossRef]
- Iftimie, R.; Minary, P.; Tuckerman, M.E. Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. USA 2005, 102, 6654–6659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnham, C.J.; Reiter, G.F.; Mayers, J.; Abdul-Redah, T.; Reichert, H.; Dosch, H.G. On the origin of the redshift of the OH stretch in Ice Ih: Evidence from the momentum distribution of the protons and the infrared spectral density. Phys. Chem. Chem. Phys. PCCP 2006, 8, 3966–3977. [Google Scholar] [CrossRef]
- Won, C.Y.; Joseph, S.; Aluru, N.R. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J. Chem. Phys. 2006, 125, 114701. [Google Scholar] [CrossRef] [Green Version]
- Noy, A.; Park, H.G.; Fornasiero, F.; Holt, J.K.; Grigoropoulos, C.P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Aluru, N.R. Why Are Carbon Nanotubes Fast Transporters of Water? Nano Lett. 2008, 8, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Alexiadis, A.; Kassinos, S. Self-diffusivity, hydrogen bonding and density of different water models in carbon nanotubes. Mol. Simul. 2008, 34, 671–678. [Google Scholar] [CrossRef]
- Alexiadis, A.; Kassinos, S. Molecular Simulation of Water in Carbon Nanotubes. Chem. Rev. 2008, 108, 5014–5034. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Maiti, P.K.; Dasgupta, C.; Sood, A.K. Strongly Anisotropic Orientational Relaxation of Water Molecules in Narrow Carbon Nanotubes and Nanorings. ACS Nano 2008, 2, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Shen, J.W.; Gubbins, K.E.; Moore, J.D.; Wu, T.; Wang, Q. Diffusion dynamics of water controlled by topology of potential energy surface inside carbon nanotubes. Phys. Rev. B 2008, 77, 125438. [Google Scholar] [CrossRef]
- Nanok, T.; Artrith, N.; Pantu, P.; Bopp, P.A.; Limtrakul, J. Structure and Dynamics of Water Confined in Single-Wall Nanotubes. J. Phys. Chem. A 2009, 113, 2103–2108. [Google Scholar] [CrossRef]
- Chaban, V. Should carbon nanotubes be degasified before filling? Chem. Phys. Lett. 2010, 500, 35–40. [Google Scholar] [CrossRef]
- Bonthuis, D.J.; Rinne, K.F.; Falk, K.; Kaplan, C.N.; Horinek, D.; Berker, A.N.; Bocquet, L.; Netz, R.R. Theory and simulations of water flow through carbon nanotubes: Prospects and pitfalls. J. Phys. Condens. Matter 2011, 23, 184110. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Docherty, H.; Singh, J.K.; Cummings, P.T. Phase Transitions of Water in Graphite and Mica Pores. J. Phys. Chem. C 2011, 115, 12448–12457. [Google Scholar] [CrossRef]
- Sisan, T.B.; Lichter, S. The end of nanochannels. Microfluid. Nanofluid. 2011, 11, 787–791. [Google Scholar] [CrossRef]
- Chaban, V.V.; Prezhdo, V.V.; Prezhdo, O.V. Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets. ACS Nano 2012, 6, 2766–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Ohno, T. Structure of water confined inside carbon nanotubes and water models. Mater. Chem. Phys. 2012, 132, 682–687. [Google Scholar] [CrossRef]
- Kaukonen, M.; Gulans, A.; Havu, P.; Kauppinen, E. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations. J. Comput. Chem. 2012, 33, 652–658. [Google Scholar] [CrossRef]
- Walther, J.H.; Ritos, K.; Cruz-Chu, E.R.; Megaridis, C.M.; Koumoutsakos, P. Barriers to Superfast Water Transport in Carbon Nanotube Membranes. Nano Lett. 2013, 13, 1910–1914. [Google Scholar] [CrossRef]
- Srivastava, A.; Hassan, J.; Homouz, D. Effect of Size and Temperature on Water Dynamics inside Carbon Nano-Tubes Studied by Molecular Dynamics Simulation. Molecules 2021, 26, 6175. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar] [CrossRef]
- Borg, M.K.; Lockerby, D.A.; Ritos, K.; Reese, J.M. Multiscale simulation of water flow through laboratory-scale nanotube membranes. J. Membr. Sci. 2018, 567, 115–126. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Radushkevich, L.; Lukyanovich, V. The Structure of Carbon Forming in Thermal Decomposition of Carbon Monoxide on an Iron Catalyst. Russ. J. Phys. Chem. 1952, 26, 88–95. (In Russian) [Google Scholar]
- Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A.; Nath, M. Nanotubes. ChemPhysChem 2001, 2, 78–105. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Kumar, S.; Rani, R.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Carbon nanotubes: A novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 2017, 46, 158–196. [Google Scholar] [CrossRef] [PubMed]
- Whitby, M.; Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2007, 2, 87–94. [Google Scholar] [CrossRef]
- Yu, L.; Shearer, C.; Shapter, J. Recent Development of Carbon Nanotube Transparent Conductive Films. Chem. Rev. 2016, 116, 13413–13453. [Google Scholar] [CrossRef]
- Cooper, D.R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; et al. Experimental Review of Graphene. ISRN Condens. Matter Phys. 2012, 2012, 501686. [Google Scholar] [CrossRef] [Green Version]
- Chatzichristos, A.; McFadden, R.M.L.; Karner, V.L.; Cortie, D.L.; Levy, C.D.P.; MacFarlane, W.A.; Morris, G.D.; Pearson, M.R.; Salman, Z.; Kiefl, R.F. Determination of the nature of fluctuations using 8Li and 9Liβ-NMR and spin-lattice relaxation. Phys. Rev. B 2017, 96, 014307. [Google Scholar] [CrossRef] [Green Version]
- Mazur, A.; Vovk, M.; Tolstoy, P. Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000-2019: A mini-review. Fullerenes Nanotub. Carbon Nanostruct. 2020, 28, 202–213. [Google Scholar] [CrossRef]
- McFadden, R.M.L.; Buck, T.J.; Chatzichristos, A.; Chen, C.C.; Chow, K.H.; Cortie, D.L.; Dehn, M.H.; Karner, V.L.; Koumoulis, D.; Levy, C.D.P.; et al. Microscopic Dynamics of Li+ in Rutile TiO2 Revealed by 8Li β-Detected Nuclear Magnetic Resonance. Chem. Mater. 2017, 29, 10187–10197. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, J.; Mukai, K.; Ikedo, Y.; Nozaki, H.; Månsson, M.; Watanabe, I. Li Diffusion in LixCoO2 Probed by Muon-Spin Spectroscopy. Phys. Rev. Lett. 2009, 103, 147601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFarlane, W.A. Implanted-ion β-NMR: A new probe for nanoscience. Solid State Nucl. Magn. Reson. 2015, 68–69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Chandrasekera, T.C.; Gladden, L. Numerical estimation of relaxation and diffusion distributions in two dimensions. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 62, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Koudriachova, M.V.; Harrison, N.M.; de Leeuw, S.W. Diffusion of Li-ions in rutile. An ab initio study. Solid State Ionics 2003, 157, 35–38. [Google Scholar] [CrossRef]
- Striolo, A. Water self-diffusion through narrow oxygenated carbon nanotubes. Nanotechnology 2007, 18, 475704. [Google Scholar] [CrossRef]
- Reiter, G.; Burnham, C.; Homouz, D.; Platzman, P.M.; Mayers, J.; Abdul-Redah, T.; Moravsky, A.P.; Li, J.C.; Loong, C.K.; Kolesnikov, A.I. Anomalous Behavior of Proton Zero Point Motion in Water Confined in Carbon Nanotubes. Phys. Rev. Lett. 2006, 97, 247801. [Google Scholar] [CrossRef]
- Jakobtorweihen, S.; Verbeek, M.G.; Lowe, C.P.; Keil, F.J.; Smit, B. Understanding the Loading Dependence of Self-Diffusion in Carbon Nanotubes. Phys. Rev. Lett. 2005, 95, 044501. [Google Scholar] [CrossRef] [Green Version]
- Pascal, T.A.; Goddard, W.A.; Jung, Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc. Natl. Acad. Sci. USA 2011, 108, 11794–11798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesnikov, A.I.; Zanotti, J.M.; Loong, C.K.; Thiyagarajan, P.; Moravsky, A.P.; Loutfy, R.O.; Burnham, C.J. Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement. Phys. Rev. Lett. 2004, 93, 035503. [Google Scholar] [CrossRef]
- Byl, O.; Liu, J.C.; Wang, Y.; Yim, W.L.; Johnson, J.K.; Yates, J.T. Unusual Hydrogen Bonding in Water-Filled Carbon Nanotubes. J. Am. Chem. Soc. 2006, 128, 12090–12097. [Google Scholar] [CrossRef]
- Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. Experimental Observation of Single-File Water Filling of Thin Single-Wall Carbon Nanotubes Down to Chiral Index (5,3). Phys. Rev. Lett. 2010, 104, 207401. [Google Scholar] [CrossRef] [PubMed]
- Maniwa, Y.; Kumazawa, Y.; Saito, Y.; Tou, H.; Kataura, H.; Ishii, H.; Suzuki, S.; Achiba, Y.; Fujiwara, A.; Suematsu, H. Anomaly of X-ray Diffraction Profile in Single-Walled Carbon Nanotubes. Jpn. J. Appl. Phys. 1999, 38, L668–L670. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ohno, T. Simulations of Unusual Properties of Water Inside Carbon Nanotubes; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- de la Llave, E.; Molinero, V.; Scherlis, D.A. Water filling of hydrophilic nanopores. J. Chem. Phys. 2010, 133, 034513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajzderska, A.; Gonzalez, M.A.; Mielcarek, J.; Wąsicki, J. Water Behavior in MCM-41 As a Function of Pore Filling and Temperature Studied by NMR and Molecular Dynamics Simulations. J. Phys. Chem. C 2014, 118, 23701–23710. [Google Scholar] [CrossRef]
- Ohba, T.; Kaneko, K.; Endo, M.; Hata, K.; Kanoh, H. Rapid Water Transportation through Narrow One-Dimensional Channels by Restricted Hydrogen Bonds. Langmuir 2013, 29, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Garate, J.A.; Perez-Acle, T.; Oostenbrink, C. On the thermodynamics of carbon nanotube single-file water loading: Free energy, energy and entropy calculations. Phys. Chem. Chem. Phys. 2014, 16, 5119–5128. [Google Scholar] [CrossRef]
- Waghe, A.; Rasaiah, J.C.; Hummer, G. Entropy of single-file water in (6, 6) carbon nanotubes. J. Chem. Phys. 2012, 137, 044709. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Pieńkowski, R.; Furmaniak, S.; Wesołowski, R.P.; Kowalczyk, P. Molecular dynamics of zigzag single walled carbon nanotube immersion in water. Phys. Chem. Chem. Phys. 2011, 13, 5621–5629. [Google Scholar] [CrossRef]
- Kumar, H.; Dasgupta, C.; Maiti, P.K. Driving force of water entry into hydrophobic channels of carbon nanotubes: Entropy or energy? Mol. Simul. 2015, 41, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B.J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44. [Google Scholar] [CrossRef]
- Holt, J.K.; Park, H.G.; Wang, Y.; Stadermann, M.; Artyukhin, A.B.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes. Science 2006, 312, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Werder, T.; Walther, J.H.; Jaffe, R.L.; Halicioglu, T.; Koumoutsakos, P. On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 1345–1352. [Google Scholar] [CrossRef]
- Skoulidas, A.I.; Ackerman, D.M.; Johnson, J.K.; Sholl, D.S. Rapid Transport of Gases in Carbon Nanotubes. Phys. Rev. Lett. 2002, 89, 185901. [Google Scholar] [CrossRef] [PubMed]
- Barati Farimani, A.; Aluru, N.R. Spatial Diffusion of Water in Carbon Nanotubes: From Fickian to Ballistic Motion. J. Phys. Chem. B 2011, 115, 12145–12149. [Google Scholar] [CrossRef] [PubMed]
- Supple, S.; Quirke, N. Rapid Imbibition of Fluids in Carbon Nanotubes. Phys. Rev. Lett. 2003, 90, 214501. [Google Scholar] [CrossRef] [PubMed]
- Mattia, D.; Calabrò, F. Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions. Microfluid. Nanofluid. 2012, 13, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Melillo, M.; Zhu, F.; Snyder, M.A.; Mittal, J. Water Transport through Nanotubes with Varying Interaction Strength between Tube Wall and Water. J. Phys. Chem. Lett. 2011, 2, 2978–2983. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Tocci, G.; Michaelides, A.; Aeppli, G. Fast diffusion of water nanodroplets on graphene. Nat. Mater. 2016, 15, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Tunuguntla, R.H.; Henley, R.Y.; Yao, Y.C.; Pham, T.A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Schmidt, B. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes. Phys. Chem. Chem. Phys. 2015, 17, 7303–7316. [Google Scholar] [CrossRef]
- Koga, K.; Gao, G.T.; Tanaka, H.; Zeng, X.C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805. [Google Scholar] [CrossRef]
- Ohba, T. Size-dependent water structures in carbon nanotubes. Angew. Chem. 2014, 126, 8170–8174. [Google Scholar] [CrossRef]
- Maniwa, Y.; Kataura, H.; Abe, M.; Suzuki, S.; Achiba, Y.; Kira, H.; Matsuda, K. Phase Transition in Confined Water Inside Carbon Nanotubes. J. Phys. Soc. Jpn. 2002, 71, 2863–2866. [Google Scholar] [CrossRef] [Green Version]
- Maniwa, Y.; Kataura, H.; Abe, M.; Udaka, A.; Suzuki, S.; Achiba, Y.; Kira, H.; Matsuda, K.; Kadowaki, H.; Okabe, Y. Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 2005, 401, 534–538. [Google Scholar] [CrossRef]
- Striolo, A.; Chialvo, A.A.; Gubbins, K.E.; Cummings, P.T. Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 2005, 122, 234712. [Google Scholar] [CrossRef] [Green Version]
- Bordin, J.R.; Diehl, A.; Barbosa, M.C. Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes. J. Phys. Chem. B 2013, 117, 7047–7056. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Y.; Zhou, J.; Lu, X.H. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes. Phys. Chem. Chem. Phys. 2004, 6, 829–835. [Google Scholar] [CrossRef]
- Taghavi, F.; Javadian, S.; Hashemianzadeh, S.M. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water. J. Mol. Graph. Model. 2013, 44, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Martí, J.; Gordillo, M.C. Temperature effects on the static and dynamic properties of liquid water inside nanotubes. Phys. Rev. E 2001, 64, 021504. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, M.; Chen, X.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178. [Google Scholar] [CrossRef]
- Gordillo, M.; Martí, J. Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 2000, 329, 341–345. [Google Scholar] [CrossRef]
- Fick, D.A.V. On liquid diffusion (english tranlation). Lond. Edinb. Dublin Philos. Mag. J. Sci. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [Google Scholar] [CrossRef]
- Jobic, H.; Hahn, K.; Kärger, J.; Bée, M.; Tuel, A.; Noack, M.; Girnus, I.; Kearley, G.J. Unidirectional and Single-File Diffusion of Molecules in One-Dimensional Channel Systems. A Quasi-Elastic Neutron Scattering Study. J. Phys. Chem. B 1997, 101, 5834–5841. [Google Scholar] [CrossRef]
- Striolo, A. The Mechanism of Water Diffusion in Narrow Carbon Nanotubes. Nano Lett. 2006, 6, 633–639. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids; Springer Series in Solid State Sciences; Springer: Berlin, Germany, 2007. [Google Scholar]
- Silva, V.H.; Aquilanti, V.; de Oliveira, H.C.; Mundim, K.C. Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs. classical non-extensive distribution. Chem. Phys. Lett. 2013, 590, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Speedy, R.J.; Angell, C.A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 ∘C. J. Chem. Phys. 1976, 65, 851–858. [Google Scholar] [CrossRef]
- Johnson, O.W. One-dimensional diffusion of Li in rutile. Phys. Rev. 1964, 136, A284–A290. [Google Scholar] [CrossRef]
- Chatzichristos, A.; McFadden, R.M.L.; Dehn, M.H.; Dunsiger, S.R.; Fujimoto, D.; Karner, V.L.; McKenzie, I.; Morris, G.D.; Pearson, M.R.; Stachura, M.; et al. Bi-Arrhenius Diffusion and Surface Trapping of 8Li+ in Rutile TiO2. Phys. Rev. Lett. 2019, 123, 095901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, B.; Maiti, P.K.; Dasgupta, C.; Sood, A.K. Strong correlations and Fickian water diffusion in narrow carbon nanotubes. J. Chem. Phys. 2007, 126, 124704. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Moore, J.D.; Liu, Y.C.; Roussel, T.J.; Wang, Q.; Wu, T.; Gubbins, K.E. Transition from single-file to Fickian diffusion for binary mixtures in single-walled carbon nanotubes. J. Chem. Phys. 2010, 133, 094501. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, H.W.; Zheng, Y.; Zhang, Z. Nanoconfinement induced anomalous water diffusion inside carbon nanotubes. Microfluid. Nanofluid. 2011, 10, 1359–1364. [Google Scholar] [CrossRef]
- Maibaum, L.; Chandler, D. A Coarse-Grained Model of Water Confined in a Hydrophobic Tube. J. Phys. Chem. B 2003, 107, 1189–1193. [Google Scholar] [CrossRef]
- Berezhkovskii, A.; Hummer, G. Single-File Transport of Water Molecules through a Carbon Nanotube. Phys. Rev. Lett. 2002, 89, 064503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.G.; Ye, H.F.; Zhang, Z.Q.; Zhang, H.W. Water diffusion inside carbon nanotubes: Mutual effects of surface and confinement. Phys. Chem. Chem. Phys. 2012, 14, 964–971. [Google Scholar] [CrossRef]
- Kanamura, K.; Yuasa, K.; Takehara, Z. Diffusion of lithium in the TiO2 cathode of a lithium battery. J. Power Sources 1987, 20, 127–134. [Google Scholar] [CrossRef]
- Churikov, A.V.; Zobenkova, V.A.; Pridatko, K.I. Lithium intercalation into titanium dioxide films from a propylene carbonate solution. Russ. J. Electrochem. 2004, 40, 63–68. [Google Scholar] [CrossRef]
- Bach, S.; Pereira-Ramos, J.P.; Willman, P. Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim. Acta 2010, 55, 4952–4959. [Google Scholar] [CrossRef]
- Churikov, A.V.; Ivanishchev, A.V.; Ushakov, A.V.; Romanova, V.O. Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries. J. Solid State Electrochem. 2014, 18, 1425–1441. [Google Scholar] [CrossRef]
- Sato, H.; Takahashi, D.; Nishina, T.; Uchida, I. Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions. J. Power Sources 1997, 68, 540–544. [Google Scholar] [CrossRef]
- Xia, H.; Lu, L.; Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 2006, 159, 1422–1427. [Google Scholar] [CrossRef]
- Verweij, H.; Schillo, M.; Li, J. Fast Mass Transport Through Carbon Nanotube Membranes. Small 2007, 3, 1996–2004. [Google Scholar] [CrossRef]
- Weissberg, H.L. End Correction for Slow Viscous Flow through Long Tubes. Phys. Fluids 1962, 5, 1033–1036. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Zeng, X.C. Multiwalled ice helixes and ice nanotubes. Proc. Natl. Acad. Sci. USA 2006, 103, 19664–19667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohba, T.; Taira, S.I.; Hata, K.; Kaneko, K.; Kanoh, H. Predominant nanoice growth in single-walled carbon nanotubes by water-vapor loading. RSC Adv. 2012, 2, 3634–3637. [Google Scholar] [CrossRef]
- Morishige, K.; Kawano, K. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior. J. Chem. Phys. 1999, 110, 4867–4872. [Google Scholar] [CrossRef]
- Maniwa, Y.; Matsuda, K.; Kyakuno, H.; Ogasawara, S.; Hibi, T.; Kadowaki, H.; Suzuki, S.; Achiba, Y.; Kataura, H. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater. 2007, 6, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Mikami, F.; Matsuda, K.; Kataura, H.; Maniwa, Y. Dielectric Properties of Water inside Single-Walled Carbon Nanotubes. ACS Nano 2009, 3, 1279–1287. [Google Scholar] [CrossRef]
- Vaitheeswaran, S.; Rasaiah, J.C.; Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J. Chem. Phys. 2004, 121, 7955–7965. [Google Scholar] [CrossRef]
- Garate, J.A.; English, N.; MacElroy, J. Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields. Mol. Simul. 2009, 35, 3–12. [Google Scholar] [CrossRef]
- Garate, J.A.; English, N.J.; MacElroy, J.M.D. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes. J. Chem. Phys. 2009, 131, 114508. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Guo, H. Control of Unidirectional Transport of Single-File Water Molecules through Carbon Nanotubes in an Electric Field. ACS Nano 2011, 5, 351–359. [Google Scholar] [CrossRef]
- Ritos, K.; Borg, M.K.; Mottram, N.J.; Reese, J.M. Electric fields can control the transport of water in carbon nanotubes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150025. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, Y.; chuan Liu, J.; Cheng, K.; zhu Jia, G. Hydrogen bonding and transportation properties of water confined in the single-walled carbon nanotube in the pulse-field. Chem. Phys. Lett. 2017, 686, 173–177. [Google Scholar] [CrossRef]
- Gravelle, S.; Joly, L.; Ybert, C.; Bocquet, L. Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport. J. Chem. Phys. 2014, 141, 18C526. [Google Scholar] [CrossRef] [Green Version]
- Shahbabaei, M.; Kim, D. Molecular simulation study of water transport through aquaporin-inspired pore geometry. J. Mech. Sci. Technol. 2017, 31, 3845–3851. [Google Scholar] [CrossRef]
- Hanasaki, I.; Nakatani, A. Water flow through carbon nanotube junctions as molecular convergent nozzles. Nanotechnology 2006, 17, 2794–2804. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ramazani, F.; Sahimi, M. Nanojunction Effects on Water Flow in Carbon Nanotubes. Sci. Rep. 2018, 8, 7752. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Ding, F. The Great Reduction of a Carbon Nanotube’s Mechanical Performance by a Few Topological Defects. ACS Nano 2016, 10, 6410–6415. [Google Scholar] [CrossRef]
- Banerjee, S.; Kahn, M.G.C.; Wong, S.S. Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem.—A Eur. J. 2003, 9, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Norizan, M.N.; Moklis, M.H.; Demon, S.Z.N.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Targeted Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 16573–16583. [Google Scholar] [CrossRef]
- Tuerhong, M.; XU, Y.; YIN, X.B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon Nanoparticle-based Fluorescent Bioimaging Probes. Sci. Rep. 2013, 3, 1473. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Bhunia, S.K.; Dalal, C.; Jana, N.R. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe. ACS Appl. Mater. Interfaces 2016, 8, 9305–9313. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613. [Google Scholar] [CrossRef]
- Wong, S.S.; Joselevich, E.; Woolley, A.T.; Cheung, C.L.; Lieber, C.M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998, 394, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Muhulet, A.; Miculescu, F.; Voicu, S.I.; Schütt, F.; Thakur, V.K.; Mishra, Y.K. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 2018, 9, 154–186. [Google Scholar] [CrossRef]
- Adamska, M.; Narkiewicz, U. Fluorination of Carbon Nanotubes—A Review. J. Fluor. Chem. 2017, 200, 179–189. [Google Scholar] [CrossRef]
- Zou, S.; Smith, E.D.; Lin, S.; Martin, S.M.; He, Z. Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ. Int. 2019, 131, 104970. [Google Scholar] [CrossRef]
- Lin, T.T.; Lai, W.H.; Lü, Q.F.; Yu, Y. Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance. Electrochim. Acta 2015, 178, 517–524. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, G.; Feng, Y.; Xiong, T.; Hou, H.; Guo, Q. Flexible 3D nitrogen-doped carbon nanotubes nanostructure: A good matrix for enzyme immobilization and biosensing. Sens. Actuators B Chem. 2016, 222, 829–838. [Google Scholar] [CrossRef]
- Shi, Q.; Peng, F.; Liao, S.; Wang, H.; Yu, H.; Liu, Z.; Zhang, B.; Su, D. Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A 2013, 1, 14853–14857. [Google Scholar] [CrossRef]
- Yue, J.; Gu, X.; Jiang, X.; Chen, L.; Wang, N.; Yang, J.; Ma, X. Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochim. Acta 2015, 182, 676–681. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble Carbon Nanotubes. Chem.—A Eur. J. 2003, 9, 4000–4008. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.J.; Gu, Z.; Peng, H.; Flor, E.L.; Hauge, R.H.; Smalley, R.E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547. [Google Scholar] [CrossRef]
- Gu, Z.; Peng, H.; Hauge, R.H.; Smalley, R.E.; Margrave, J.L. Cutting Single-Wall Carbon Nanotubes through Fluorination. Nano Lett. 2002, 2, 1009–1013. [Google Scholar] [CrossRef]
- Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. J. Am. Chem. Soc. 2003, 125, 8566–8580. [Google Scholar] [CrossRef] [PubMed]
- Bahr, J.L.; Yang, J.; Kosynkin, D.V.; Bronikowski, M.J.; Smalley, R.E.; Tour, J.M. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542. [Google Scholar] [CrossRef]
- Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D.M.; Holzinger, M.; Hirsch, A. Organic Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2002, 124, 760–761. [Google Scholar] [CrossRef] [PubMed]
- Hamon, M.; Hu, H.; Bhowmik, P.; Niyogi, S.; Zhao, B.; Itkis, M.; Haddon, R. End-group and defect analysis of soluble single-walled carbon nanotubes. Chem. Phys. Lett. 2001, 347, 8–12. [Google Scholar] [CrossRef]
- Monthioux, M.; Smith, B.; Burteaux, B.; Claye, A.; Fischer, J.; Luzzi, D. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 2001, 39, 1251–1272. [Google Scholar] [CrossRef]
- Majumder, M.; Corry, B. Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem. Commun. 2011, 47, 7683–7685. [Google Scholar] [CrossRef]
- Clark, J.K., II; Paddison, S.J. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes. Phys. Chem. Chem. Phys. 2014, 16, 17756–17769. [Google Scholar] [CrossRef]
- Wongkoblap, A.; Tangsathitkulchai, C.; Klomkliang, N.; Do, D.D.; Ngernyen, Y. Characterization of single wall carbon nanotubes and activated carbon with water adsorption in finite-length pore models. Eng. J. 2013, 17, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhao, T.; Li, Z. Effects of ions on the diffusion coefficient of water in carbon nanotubes. J. Appl. Phys. 2014, 116, 054311. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzichristos, A.; Hassan, J. Current Understanding of Water Properties inside Carbon Nanotubes. Nanomaterials 2022, 12, 174. https://doi.org/10.3390/nano12010174
Chatzichristos A, Hassan J. Current Understanding of Water Properties inside Carbon Nanotubes. Nanomaterials. 2022; 12(1):174. https://doi.org/10.3390/nano12010174
Chicago/Turabian StyleChatzichristos, Aris, and Jamal Hassan. 2022. "Current Understanding of Water Properties inside Carbon Nanotubes" Nanomaterials 12, no. 1: 174. https://doi.org/10.3390/nano12010174
APA StyleChatzichristos, A., & Hassan, J. (2022). Current Understanding of Water Properties inside Carbon Nanotubes. Nanomaterials, 12(1), 174. https://doi.org/10.3390/nano12010174