Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Si@C NPs
2.2. Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, J.; Shin, J.S.; Ko, S.; Park, H.; Song, W.J.; Park, C.B.; Kang, J. Self-Assembled Protective Layer by Symmetric Ionic Liquid for Long-Cycling Lithium–Metal Batteries. Adv. Energy Mater. 2022, 22, 2103955. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Jeong, I.; Han, D.-Y.; Hwang, J.; Song, W.-J.; Park, S. Foldable Batteries: From Materials to Devices. Nanoscale Adv. 2022, 4, 1494–1516. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Song, W.; Yoo, S.; Lee, J.; Han, J.; Son, Y.; Kim, S.; Shin, M.; Choi, S.; Jang, J.; Cho, J. Zinc-Reduced Mesoporous TiOx Li-Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chem. Asian J. 2016, 11, 3382–3388. [Google Scholar] [CrossRef]
- Kennedy, B.; Patterson, D.; Camilleri, S. Use of Lithium-Ion Batteries in Electric Vehicles. J. Power Sources 2000, 90, 156–162. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Liu, J.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-ion Batteries. Angew. Chem. 2015, 127, 9768–9772. [Google Scholar] [CrossRef]
- Park, H.; Choi, S.; Lee, S.-J.; Cho, Y.-G.; Hwang, G.; Song, H.-K.; Choi, N.-S.; Park, S. Design of an Ultra-Durable Silicon-Based Battery Anode Material with Exceptional High-Temperature Cycling Stability. Nano Energy 2016, 26, 192–199. [Google Scholar] [CrossRef]
- Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule 2017, 1, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-based Anodes for Lithium-ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Liu, T.; Gao, X.; Li, S.; Ling, M.; Liang, C.; Zheng, J.; Lin, Z. Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder for High-areal-capacity Lithium-ion Batteries. Adv. Energy Mater. 2020, 10, 1903110. [Google Scholar] [CrossRef]
- Franco Gonzalez, A.; Yang, N.-H.; Liu, R.-S. Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. J. Phys. Chem. C 2017, 121, 27775–27787. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shen, L.; van Aken, P.A.; Maier, J.; Yu, Y. Dual-functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-ion Batteries. Adv. Mater. 2017, 29, 1605650. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Chou, S.; Xu, Y.; Li, W.; Kong, B.; Dou, S.X.; Liu, H.K.; Yang, J. Critical Thickness of Phenolic Resin-Based Carbon Interfacial Layer for Improving Long Cycling Stability of Silicon Nanoparticle Anodes. Nano Energy 2016, 27, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Kamali, A.R.; Kim, H.-K.; Kim, K.-B.; Kumar, R.V.; Fray, D.J. Large Scale Green Production of Ultra-High Capacity Anode Consisting of Graphene Encapsulated Silicon Nanoparticles. J. Mater. Chem. A 2017, 5, 19126–19135. [Google Scholar] [CrossRef]
- Kamali, A.R.; Haghighat-Shishavan, S.; Nazarian-Samani, M.; Rezaei, A.; Kim, K.-B. Ultra-Fast Shock-Wave Combustion Synthesis of Nanostructured Silicon from Sand with Excellent Li Storage Performance. Sustain. Energy Fuels 2019, 3, 1396–1405. [Google Scholar] [CrossRef]
- Dong, H.; Fu, X.; Wang, J.; Wang, P.; Ding, H.; Song, R.; Wang, S.; Li, R.; Li, S. In-Situ Construction of Porous Si@C Composites with LiCl Template to Provide Silicon Anode Expansion Buffer. Carbon 2021, 173, 687–695. [Google Scholar] [CrossRef]
- Liang, J.; Huo, F.; Zhang, Z.; Yang, W.; Javid, M.; Jung, Y.; Dong, X.; Cao, G. Controlling the Phenolic Resin-Based Amorphous Carbon Content for Enhancing Cycling Stability of Si Nanosheets@C Anodes for Lithium-Ion Batteries. Appl. Surf. Sci. 2019, 476, 1000–1007. [Google Scholar] [CrossRef]
- Yang, W.; Ding, P.; Zhou, L.; Yu, J.; Chen, X.; Jiao, F. Preparation of Diamine Modified Mesoporous Silica on Multi-Walled Carbon Nanotubes for the Adsorption of Heavy Metals in Aqueous Solution. Appl. Surf. Sci. 2013, 282, 38–45. [Google Scholar] [CrossRef]
- Ge, T.; Tang, K.; Yu, Y.; Tan, X. Preparation and Properties of the 3-Pentadecyl-Phenol in Situ Modified Foamable Phenolic Resin. Polymers 2018, 10, 1124. [Google Scholar] [CrossRef]
- Qi, C.; Li, S.; Yang, Z.; Xiao, Z.; Zhao, L.; Yang, F.; Ning, G.; Ma, X.; Wang, C.; Xu, J. Suitable Thickness of Carbon Coating Layers for Silicon Anode. Carbon 2022, 186, 530–538. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, S.-I.; Yoon, J.-C.; Ha, S.-J.; Jang, J.-H. Realizing Battery-like Energy Density with Asymmetric Supercapacitors Achieved by Using Highly Conductive Three-Dimensional Graphene Current Collectors. J. Mater. Chem. A 2017, 5, 13347–13356. [Google Scholar] [CrossRef]
- Batool, S.; Idrees, M.; Kong, J.; Zhang, J.; Kong, S.; Dong, M.; Hou, H.; Fan, J.; Wei, H.; Guo, Z. Assessment of the Electrochemical Behaviour of Silicon@Carbon Nanocomposite Anode for Lithium-Ion Batteries. J. Alloys Compd. 2020, 832, 154644. [Google Scholar] [CrossRef]
- Gao, F.; Huang, F.; Tang, L.; Du, L. Synthesis and Characterization of Poly(Multidimethylsiloxane-1,4-Ethynylenephenyleneethynylene)s. Polym. J. 2011, 43, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.; Song, W.; Han, J.; Hwang, C.; Lee, S.; Yoo, S.; Park, S.; Song, H.; Yoo, S.; Choi, N. Metamorphosis of Seaweeds into Multitalented Materials for Energy Storage Applications. Adv. Energy Mater. 2019, 9, 1900570. [Google Scholar] [CrossRef]
- Wang, D.; Gao, M.; Pan, H.; Wang, J.; Liu, Y. High Performance Amorphous-Si@SiOx/C Composite Anode Materials for Li-Ion Batteries Derived from Ball-Milling and in Situ Carbonization. J. Power Sources 2014, 256, 190–199. [Google Scholar] [CrossRef]
- Lu, Z.; Li, B.; Yang, D.; Lv, H.; Xue, M.; Zhang, C. A self-assembled silicon/phenolic resin-based carbon core–shell nanocomposite as an anode material for lithium-ion batteries. RSC Adv. 2018, 8, 3477–3482. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Wang, H.; Gao, D.; Chen, S.; Tan, L.; Li, L. Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 2014, 50, 5878–5880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, J.; Jin, F.; Wang, H.; Wu, S.; Zhang, H. Carbon coated Si nanoparticles anchored to graphene sheets with excellent cycle performance and rate capability for Lithium-ion battery anodes. Surf. Coat. Technol. 2021, 418, 127262. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, T.; Li, Y.; Yang, J.; Huang, B.; Ou, S.; Meng, C.; Zhang, S.; Tong, Y. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. Energy Storage Mater. 2021, 39, 354–364. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Jung, M.; Park, J.-J.; Kim, E.-K.; Lee, G.; Lee, K.J.; Choi, J.-H.; Song, W.-J. Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Nanomaterials 2022, 12, 1649. https://doi.org/10.3390/nano12101649
Hwang J, Jung M, Park J-J, Kim E-K, Lee G, Lee KJ, Choi J-H, Song W-J. Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Nanomaterials. 2022; 12(10):1649. https://doi.org/10.3390/nano12101649
Chicago/Turabian StyleHwang, Jongha, Mincheol Jung, Jin-Ju Park, Eun-Kyung Kim, Gunoh Lee, Kyung Jin Lee, Jae-Hak Choi, and Woo-Jin Song. 2022. "Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process" Nanomaterials 12, no. 10: 1649. https://doi.org/10.3390/nano12101649
APA StyleHwang, J., Jung, M., Park, J. -J., Kim, E. -K., Lee, G., Lee, K. J., Choi, J. -H., & Song, W. -J. (2022). Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Nanomaterials, 12(10), 1649. https://doi.org/10.3390/nano12101649