Natural Polymers and Their Nanocomposites Used for Environmental Applications
Abstract
:1. Introduction
2. Natural Polymers as Sustainable Advanced Materials for Environmental Protection
3. Polymeric Nanocomposites as Sustainable Advanced Materials for Environmental Protection
4. Remediation of Water/Soil Systems
5. Air Decontamination
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile butadiene styrene |
AOB | Ammonia-oxidizing bacteria |
AC | Activated carbon |
BR18 dye | Basic Red 18 |
BC | Black carbon |
CMC | Carboxymethyl cellulose |
CMC-g-PDMAEMA | Carboxymethyl cellulose (CMC) g-poly(2-(dimethylamino) ethyl methacrylate) |
CA | Cellulose acetate |
CaAlg | Calcium alginate |
CNT | Carbon nanotube |
CPB | Cetylpyridinium bromide |
COD | Chemical oxygen demand |
CS/PVA-ENF | Chitosan/polyvinyl alcohol electrospun nanofiber |
DTPA | Diethylenetriaminepentaacetic acid |
EDTA | Ethylenediaminetetraacetic acid |
EPS | Extracellular polymer substances |
GO | Graphene oxide |
HM | Hydrogel membrane |
IDS | Iminodisuccinic acid |
KGM | Konjac glucomannan |
Fe3O4@ESM | Magnetic eggshell membrane |
MHCC | Magnetic hollow carbon composite |
MILs | Materials of Institute Lavoisier frameworks |
MO | Methyl orange |
MB | Methylene blue |
MOF | Metal–organic framework |
NRB | Nitrate-reducing bacteria |
PAHs | Polycyclic aromatic hydrocarbons |
PAN | Polyacrylonitrile |
PBTC | 2-phosphonobutane-1,2,4-tricarboxylic acid |
PLA | Poly(lactic acid) |
PLLA | Poly(l-lactic acid) |
PEG | Polyethylene glycol |
PET | Polyethylene terephthalate |
PI | Polyimide |
PM | particulate matter |
PP | Polypropylene |
PS | Polystyrene |
PU | Polyurethane |
PVA | Polyvinyl alcohol |
RB 19 | Reactive Blue 19 dye |
SA | Sodium alginate |
SPI | Soy protein isolate |
TCLP | Toxicity characteristic leaching procedure |
TSTC[4]AS-s-SA | Tetrasodium thiacalix[4]arene tetrasulfonate |
ZIFs | Zeolitic imidazolate frameworks |
References
- Barba, A.A.; Dalmoro, A.; d’Amore, M.; Lamberti, G.; Cascone, S.; Titomanlio, G. Polymers in life sciences: Pharmaceutical and biomedical applications. In Proceedings of the Second Icranet Cesar Lattes Meeting: Supernovae, Neutron Stars and Black Holes, Fortaleza, Brazil, 13–22 April 2015; AIP Conference Proceedings: College Park, MD, USA, 2015; p. 020051. [Google Scholar]
- Dwivedi, P.; Narvi, S.S.; Tewari, R.P. Application of polymer nanocomposites in the nanomedicine landscape: Envisaging strategies to combat implant associated infections. J. Appl. Biomater. Funct. Mater. 2013, 11, 129–142. [Google Scholar] [CrossRef]
- Gross, R.A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Benkeblia, N. Polysaccharides: Natural Fibers in Food and Nutrition; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Heinze, T.; Barsett, H.; Ebringerová, A.; Harding, S.E.; Heinze, T.; Hromádková, Z.; Muzzarelli, C.; Muzzarelli, R.A.A.; Paulsen, B.S.; El Seoud, O.A. Polysaccharides I: Structure, Characterization and Use; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Morganti, P.; Run-Qun, Q.; Gagliardini, A.; Gianluca, M.; Coltelli, M.B. Natural polymers for biodegradable dressings to Save the Environment. Int. J. Nanotechnol. Nanomed. 2021, 22, 29. [Google Scholar]
- Morganti, P.; Coltelli, M.; Gianluca, M.; Morganti, P. Natural Polymers For A Cleaner Environment. Int. J. Nanotechnol. Nanomed. 2018, 3, 1–4. [Google Scholar]
- Lippi, M.; Riva, L.; Caruso, M.; Punta, C. Cellulose for the Production of Air-Filtering Systems: A Critical Review. Materials 2022, 15, 976. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Hu, J.C.; Liu, W.L.; Nie, F.M. Application of Biopolymer-based Adsorbents in Removal of Heavy Metals. Adv. Mater. Res. 2014, 1048, 373–377. [Google Scholar] [CrossRef]
- Biswas, S.; Pal, A. Application of biopolymers as a new age sustainable material for surfactant adsorption: A brief review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100145. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Gao, F.; Pan, G. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. Rsc Adv. 2016, 6, 105988–105995. [Google Scholar] [CrossRef] [Green Version]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Norgren, M.; Edlund, H. Lignin: Recent advances and emerging applications. Curr. Opin. Colloid Interface Sci. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Tang, Q.; Sun, X.; Li, Q.; Lin, J.; Wu, J. Preparation of porous polyacrylate/poly (ethylene glycol) interpenetrating network hydrogel and simplification of Flory theory. J. Mater. Sci. 2009, 44, 3712–3718. [Google Scholar] [CrossRef]
- Ojeda, T. Polymers and the Environment. In Polymer Science; IntechOpen: London, UK, 2013; Volume 23. [Google Scholar]
- Lee, C.G.; Da Silva, C.A.; Lee, J.-Y.; Hartl, D.; Elias, J.A. Chitin regulation of immune responses: An old molecule with new roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morganti, P.; Febo, P.; Cardillo, M.; Donnarumma, G.; Baroni, A. Chitin nanofibril and nanolignin: Natural polymers of biomedical interest. J. Clin. Cosmet. Derm. 2017, 1, 113. [Google Scholar]
- Raabe, D.; Sachs, C.; Romano, P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 2005, 53, 4281–4292. [Google Scholar] [CrossRef]
- Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 2009, 10, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, Y.; Li, Y.; Wu, J.; Ma, X.; Yu, C.; Ji, L. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013, 260, 9–15. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Shabeer, T.P.A.; Sarkar, B. Chitosan-g-poly (acrylic acid)-bentonite composite: A potential immobilizing agent of heavy metals in soil. Cellulose 2018, 25, 3985–3999. [Google Scholar] [CrossRef] [Green Version]
- Alsharari, S.F.; Tayel, A.A.; Moussa, S.H. Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int. J. Biol. Macromol. 2018, 118, 2265–2268. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 2010, 91, 798–806. [Google Scholar] [CrossRef]
- Tayel, A.A.; Gharieb, M.M.; Zaki, H.R.; Elguindy, N.M. Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan. Int. J. Biol. Macromol. 2016, 83, 277–281. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, E.; Chiellini, F.; Cinelli, P. Polymers from Renewable Resources. In Degradable Polymers: Principles and Applications; Scott, G., Ed.; Springer: Dordrecht, The Netherlands, 2002; pp. 163–233. [Google Scholar]
- Inbaraj, B.S.; Chen, B.-Y.; Liao, C.-W.; Chen, B.-H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly (gamma -glutamic acid) capped gold nanoparticles. Int. J. Biol. Macromol. 2020, 161, 1484–1495. [Google Scholar] [CrossRef] [PubMed]
- Gad, Y.H. Preparation and characterization of poly (2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat. Phys. Chem. 2008, 77, 1101–1107. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef]
- Tayel, A.A.; Ibrahim, S.I.; Al-Saman, M.A.; Moussa, S.H. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. Int. J. Biol. Macromol. 2014, 69, 471–475. [Google Scholar] [CrossRef]
- Sankar, D.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohydr. Polym. 2012, 90, 725–729. [Google Scholar] [CrossRef]
- Yong, S.K.; Shrivastava, M.; Srivastava, P.; Kunhikrishnan, A.; Bolan, N. Environmental applications of chitosan and its derivatives. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 233, pp. 1–43. [Google Scholar]
- Yang, Z.-K.; Niu, Y.-F.; Ma, Y.-H.; Xue, J.; Zhang, M.-H.; Yang, W.-D.; Liu, J.-S.; Lu, S.-H.; Guan, Y.; Li, H.-Y. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 2013, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Orzali, L.; Corsi, B.; Forni, C.; Riccioni, L. Chitosan in Agriculture: A New Challenge for Managing Plant Disease. In Biological Activities and Application of Marine Polysaccharides; IntechOpen: London, UK, 2017. [Google Scholar]
- Bazargan-Lari, R.; Zafarani, H.R.; Bahrololoom, M.E.; Nemati, A. Removal of Cu(II)ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2014, 45, 1642–1648. [Google Scholar] [CrossRef]
- Das, M.; Bhattacharyya, R. Cellulose Nanofibers: Synthesis, Properties and Applications. In Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 1–37. [Google Scholar]
- Khalil, H.A.; Bhat, A.; Yusra, A.I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Kasim, N.A.M.; Knight, V.F.; Ujang, F.A.; Janudin, N.; Razak, M.A.I.A.; Shah, N.A.A.; Noor, S.A.M.; Jamal, S.H.; Ong, K.K.; et al. Nanocellulose: The next super versatile material for the military. Mater. Adv. 2021, 2, 1485–1506. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Rojas, O.J.; Lucia, L.A.; Sain, M. Cellulosic nanocomposites: A review. BioResources 2008, 3, 929–980. [Google Scholar]
- Mano, E.B. Natural Polymer Characterization. In Macromolecular Symposia; Wiley-VCH Verlag: Weinheim, Germany, 2007; pp. 1–4. [Google Scholar]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Almeida, D.S.; Martins, L.D.; Muniz, E.C.; Rudke, A.P.; Squizzato, R.; Beal, A.; de Souza, P.R.; Bonfim, D.P.F.; Aguiar, M.L.; Gimenes, M.L. Biodegradable CA/CPB electrospun nanofibers for efficient retention of airborne nanoparticles. Process Saf. Environ. Prot. 2020, 144, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Kendouli, S.; Sobti, N.; Bensouissi, A.; Avci, A.; Eskizeybek, V.; Achour, S. Modification of cellulose acetate nanofibers with PVP/Ag addition. Mater. Sci. Semicond. Process. 2014, 28, 13–19. [Google Scholar] [CrossRef]
- de Almeida, D.S.; Duarte, E.H.; Hashimoto, E.M.; Turbiani, F.R.; Muniz, E.C.; de Souza, P.R.; Gimenes, M.L.; Martins, L.D. Development and characterization of electrospun cellulose acetate nanofibers modified by cationic surfactant. Polym. Test. 2020, 81, 106206. [Google Scholar] [CrossRef]
- Lin, T.; Wang, H.; Wang, H.; Wang, X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, 9. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.H.; Hsieh, A.; Rutledge, G.C. Effect of tethering chemistry of cationic surfactants on clay exfoliation, electrospinning and diameter of PMMA/clay nanocomposite fibers. Polymer 2010, 51, 6295–6302. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.R.; Li, M.; El-Zahab, B.; Janes, M.E.; Hayes, D.; Warner, I.M. Design, Synthesis, and Biological Evaluation of β-Lactam Antibiotic-Based Imidazolium-and Pyridinium-Type Ionic Liquids. Chem. Biol. Drug Des. 2011, 78, 33–41. [Google Scholar] [CrossRef]
- Lukáč, M.; Mrva, M.; Garajová, M.; Mojžišová, G.; Varinská, L.; Mojžiš, J.; Sabol, M.; Kubincová, J.; Haragová, H.; Ondriska, F.; et al. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. Eur. J. Med. Chem. 2013, 66, 46–55. [Google Scholar] [CrossRef]
- Malek, N.A.N.N.; Ramli, N.I. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings. Appl. Clay Sci. 2015, 109, 8–14. [Google Scholar] [CrossRef]
- Wu, H.; Yan, Y.; Feng, J.; Zhang, J.; Deng, S.; Cai, X.; Huang, L.; Xie, X.; Shi, Q.; Tan, S. Cetylpyridinium bromide/montmorillonite-graphene oxide composite with good antibacterial activity. Biomed. Mater. 2020, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Omer, S. Heavy Metal Removal by Alginate Based Agriculture and Industrial Waste Nanocomposites. In Properties and Applications of Alginates; IntechOpen: London, UK, 2021. [Google Scholar]
- Alfaro-Cuevas-Villanueva, R.; Hidalgo-Vázquez, A.R.; Cortés Penagos, C.d.J.; Cortés-Martínez, R. Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci. World J. 2014, 2014, 647512. [Google Scholar] [CrossRef] [PubMed]
- Wöltje, M.; Böbel, M. Natural Biodegradable Medical Polymers: Silk. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 351–376. [Google Scholar]
- Siddharth, T.; Sridhar, P.; Vinila, V.; Tyagi, R. Environmental applications of microbial extracellular polymeric substance (EPS): A review. J. Environ. Manag. 2021, 287, 112307. [Google Scholar] [CrossRef]
- More, T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Nouha, K.; Kumar, R.S.; Tyagi, R.D. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour. Technol. 2016, 212, 120–129. [Google Scholar] [CrossRef]
- Guibal, E.; Van Vooren, M.; Dempsey, B.A.; Roussy, J. A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep. Sci. Technol. 2006, 41, 2487–2514. [Google Scholar] [CrossRef]
- Barton, J.; Niemczyk, A.; Barton-Pudlik, J.; Korach, Ł.; Sacher-Majewska, B. Polymer composites, biocomposites and nanocomposites. Production, composition, properties and application fields. Chemik 2014, 68, 280–287. [Google Scholar]
- Zaferani, S.H. Introduction of polymer-based nanocomposites. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–25. [Google Scholar]
- Ray, S.S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079. [Google Scholar]
- Othman, S.H. Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agric. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V. In-Situ Synthesis of Polymer Nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Erceg, M.; Jozić, D.; Banovac, I.; Perinović, S.; Bernstorff, S. Preparation and characterization of melt intercalated poly (ethylene oxide)/lithium montmorillonite nanocomposites. Thermochim. Acta 2014, 579, 86–92. [Google Scholar] [CrossRef]
- Carroccio, S.C.; Scarfato, P.; Bruno, E.; Aprea, P.; Dintcheva, N.T.; Filippone, G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics—A review of life-cycle assessment studies. J. Clean. Prod. 2022, 335, 130322. [Google Scholar] [CrossRef]
- Nithya, A.; JeevaKumari, H.L.; Rokesh, K.; Ruckmani, K.; Jeganathan, K.; Jothivenkatachalam, K. A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. J. Photochem. Photobiol. B-Biol. 2015, 153, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, M.; el Kacem Qaiss, A.; Bouhfid, R. Nanoclay Reinforced Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Aznar-Mollá, F.; Fito-López, C.; Alvaro, J.A.H. Insights into the potential effects of released engineered nanomaterials from polymer nanocomposites: Environmental issues and future activities for risk assessment and management. J. Nanoparticle Res. 2021, 23, 84. [Google Scholar] [CrossRef]
- Mahmodi, G.; Zarrintaj, P.; Taghizadeh, A.; Taghizadeh, M.; Manouchehri, S.; Dangwal, S.; Ronte, A.; Ganjali, M.R.; Ramsey, J.D.; Kim, S.-J.; et al. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydr. Res. 2020, 489, 107930. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; Shekarchi, A.A. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl. Surf. Sci. 2019, 480, 288–299. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Oveisi, M.; Taghizadeh, A.; Taghizadeh, M. Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydr. Polym. 2020, 227, 115364. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Li, T.; Zhang, Y.; Xu, H.; Sun, Y.; Gu, X.; Gu, C.; Luo, J.; Gao, B. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. J. Hazard. Mater. 2022, 429, 128271. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Vatanpour, V.; Taghizadeh, A.; Taghizadeh, M.; Ganjali, M.R.; Munir, M.T.; Habibzadeh, S.; Saeb, M.R.; Ghaedi, M. Hydrogel membranes: A review. Mater. Sci. Eng. C 2020, 114, 111023. [Google Scholar] [CrossRef]
- Mirabedini, M.; Kassaee, M.Z.; Poorsadeghi, S. Novel Magnetic Chitosan Hydrogel Film, Cross-Linked with Glyoxal as an Efficient Adsorbent for Removal of Toxic Cr(VI) from Water. Arab. J. Sci. Eng. 2017, 42, 115–124. [Google Scholar] [CrossRef]
- Salama, A.; Shukry, N.; El-Sakhawy, M. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int. J. Biol. Macromol. 2015, 73, 72–75. [Google Scholar] [CrossRef]
- Agboola, O.; Fayomi, O.S.I.; Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; Sanni, S.E.; Okoro, E.E.; Moropeng, L.; Sadiku, R.; Kupolati, K.W.; et al. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022, 74, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zhou, N. The Influence of Biodegradable Polymer Materials on Heavy Metal Activity in Soil Based on Analysis of Big Data. J. Phys. Conf. Ser. 2021, 1744, 032154. [Google Scholar] [CrossRef]
- Qu, G.; de Varennes, A. Use of hydrophilic insoluble polymers in the restoration of metal-contaminated soils. Appl. Environ. Soil Sci. 2009, 2009, 790687. [Google Scholar] [CrossRef] [Green Version]
- Kirchmann, H.; Eriksson, J. Trace Elements in Crops: Effects of Soil Physical and Chemical Properties. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 910–912. [Google Scholar]
- Kostal, J.; Prabhukumar, G.; Lao, U.L.; Chen, A.; Matsumoto, M.; Mulchandani, A.; Chen, W. Customizable biopolymers for heavy metal remediation. J. Nanoparticle Res. 2005, 7, 517–523. [Google Scholar] [CrossRef]
- Zheng, Y.; Monty, J.; Linhardt, R.J. Polysaccharide-based nanocomposites and their applications. Carbohydr. Res. 2015, 405, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Jensen-Spaulding, A.; Shuler, M.L.; Lion, L.W. Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. Water Res. 2004, 38, 1121–1128. [Google Scholar] [CrossRef]
- Xiang, J.; Lin, Q.; Yao, X.; Yin, G. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environ. Res. 2021, 195, 110650. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, S.; Yilihamu, A.; Ma, Q.; Shi, M.; Ouyang, B.; Zhang, Q.; Guan, X.; Yang, S.-T. Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environ. Res. 2019, 179, 108779. [Google Scholar] [CrossRef]
- Raynie, D.E. Modern extraction techniques. Anal. Chem. 2006, 78, 3997–4004. [Google Scholar] [CrossRef] [PubMed]
- Rossner, A.; Snyder, S.A.; Knappe, D.R.U. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009, 43, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. Chemengineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Gonzalez-Rubio, S.; Ballesteros-Gomez, A.; Asimakopoulos, A.G.; Jaspers, V.L.B. A review on contaminants of emerging concern in European raptors (2002–2020). Sci. Total Environ. 2021, 760, 143337. [Google Scholar] [CrossRef]
- Zaman, H.G.; Baloo, L.; Pendyala, R.; Singa, P.K.; Ilyas, S.U.; Kutty, S.R.M. Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review. Materials 2021, 14, 7607. [Google Scholar] [CrossRef]
- Madaeni, S.; Ghaemi, N.; Rajabi, H. Advances in polymeric membranes for water treatment. In Advances in Membrane Technologies for Water Treatment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–41. [Google Scholar]
- Khodakarami, M.; Bagheri, M. Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J. Clean. Prod. 2021, 296, 126404. [Google Scholar] [CrossRef]
- Shahkaramipour, N.; Ramanan, S.N.; Fister, D.; Park, E.; Venna, S.R.; Sun, H.; Cheng, C.; Lin, H. Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse. Ind. Eng. Chem. Res. 2017, 56, 9202–9212. [Google Scholar] [CrossRef]
- Ohki, K.; Kanesaki, Y.; Suzuki, N.; Okajima, M.; Kaneko, T.; Yoshikawa, S. Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori). J. Gen. Appl. Microbiol. 2019, 65, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Saikia, A.; Purkait, M.K.; Mohanty, K. Chitosan based ceramic ultrafiltration membrane: Preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem. Eng. J. 2011, 170, 209–219. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Seredych, M.; Bandosz, T.J.; Deliyanni, E.A. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly (acrylic acid) grafted chitosan nanocomposite. Bioresour. Technol. 2014, 152, 399–406. [Google Scholar] [CrossRef]
- Das, D.; Varghese, L.R.; Das, N. Enhanced TDS removal using cyclodextrinated, sulfonated and aminated forms of bead–membrane duo nanobiocomposite via sophorolipid mediated complexation. Desalination 2015, 360, 35–44. [Google Scholar] [CrossRef]
- Nesic, A.R.; Velickovic, S.J.; Antonovic, D.G. Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. J. Hazard. Mater. 2012, 209, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Mashile, G.P.; Dimpe, K.M.; Nomngongo, P.N. A biodegradable magnetic nanocomposite as a superabsorbent for the simultaneous removal of selected fluoroquinolones from environmental water matrices: Isotherm, kinetics, thermodynamic studies and cost analysis. Polymers 2020, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Qiu, L.; Yang, Y. Efficient adsorption of methyl orange using a modified chitosan magnetic composite adsorbent. J. Chem. Eng. Data 2016, 61, 3933–3940. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Parameswaranpillai, J.; Siengchin, S. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci. Rep. 2020, 10, 15452. [Google Scholar] [CrossRef]
- Deng, H.; Lin, P.; Xin, S.; Huang, R.; Li, W.; Du, Y.; Zhou, X.; Yang, J. Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohydr. Polym. 2012, 89, 307–313. [Google Scholar] [CrossRef]
- Dehaghi, S.M.; Rahmanifar, B.; Moradi, A.M.; Azar, P.A. Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J. Saudi Chem. Soc. 2014, 18, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, A.; Amalraj, A.; Pius, A. Adsorption studies for the removal of nitrate using chitosan/PEG and chitosan/PVA polymer composites. J. Water Process Eng. 2016, 9, 123–134. [Google Scholar] [CrossRef]
- Bozorgpour, F.; Ramandi, H.F.; Jafari, P.; Samadi, S.; Yazd, S.S.; Aliabadi, M. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads. Int. J. Biol. Macromol. 2016, 93, 557–565. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; Abdel-Aal, H.; Fekry, N.A.; Osman, M.M. Imprinting “Nano-SiO2-crosslinked chitosan-Nano-TiO2” polymeric nanocomposite for selective and instantaneous microwave-assisted sorption of Hg(II) and Cu(II). ACS Sustain. Chem. Eng. 2018, 6, 4564–4573. [Google Scholar] [CrossRef]
- Karthiga devi, K.; Natarajan, K.A. Production and characterization of bioflocculants for mineral processing applications. Int. J. Miner. Process. 2015, 137, 15–25. [Google Scholar] [CrossRef]
- Lin, J.; Harichund, C. Industrial effluent treatments using heavy-metal removing bacterial bioflocculants. Water SA 2011, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Nie, M.; Yin, X.; Jia, J.; Wang, Y.; Liu, S.; Shen, Q.; Li, P.; Wang, Z. Production of a novel bioflocculant MNXY1 by Klebsiella pneumoniae strain NY1 and application in precipitation of cyanobacteria and municipal wastewater treatment. J. Appl. Microbiol. 2011, 111, 547–558. [Google Scholar] [CrossRef]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.-M.; Qian, C.-D.; Jiang, X.-H.; Wu, X.-C. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Song, L.; Li, D.; Qiao, J.; Zhao, T.; Zhao, H. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2. PLoS ONE 2014, 9, e114591. [Google Scholar] [CrossRef] [Green Version]
- Lakouraj, M.M.; Mojerlou, F.; Zare, E.N. Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydr. Polym. 2014, 106, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Ahmad, R.; Hasan, I. Poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: Synthesis and its application for the removal of heavy metal ions. Desalination Water Treat. 2016, 57, 19820–19833. [Google Scholar] [CrossRef]
- Phiri, I.; Ko, J.M.; Mushonga, P.; Kugara, J.; Onani, M.O.; Msamadya, S.; Kim, S.J.; Bon, C.Y.; Mugobera, S.; Siyaduba-Choto, K.; et al. Simultaneous removal of cationic, anionic and organic pollutants in highly acidic water using magnetic nanocomposite alginate beads. J. Water Process Eng. 2019, 31, 100884. [Google Scholar] [CrossRef]
- Isawi, H. Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arab. J. Chem. 2020, 13, 5691–5716. [Google Scholar] [CrossRef]
- Jayalakshmi, R.; Jeyanthi, J. Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: Performance and mechanism. Microchem. J. 2019, 145, 791–800. [Google Scholar]
- Yu, Y.; Zhang, G.; Ye, L. Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide-sodium alginate nanocomposite hydrogel with high Pb(II) adsorption capacity. J. Appl. Polym. Sci. 2019, 136, 47318. [Google Scholar] [CrossRef]
- Yang, N.; Wang, R.; Rao, P.; Yan, L.; Zhang, W.; Wang, J.; Chai, F. The fabrication of calcium alginate beads as a green sorbent for selective recovery of Cu(II) from metal mixtures. Crystals 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Shawky, H.A. Improvement of water quality using alginate/montmorillonite composite beads. J. Appl. Polym. Sci. 2011, 119, 2371–2378. [Google Scholar] [CrossRef]
- Devi, G.K.; Kumar, P.S.; Kumar, K.S. Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: Prediction of isotherm and kinetic parameters. Desalination Water Treat. 2016, 57, 27686–27699. [Google Scholar]
- Booshehri, A.Y.; Wang, R.; Xu, R. Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem. Eng. J. 2015, 262, 999–1008. [Google Scholar] [CrossRef]
- Velu, S.; Rambabu, K.; Muruganandam, I. Preparation, characterization and application of cellulose acetate-iron nanoparticles blend ultrafiltration membranes. J. Chem. Pharm. Res. 2013, 5, 1418–1428. [Google Scholar]
- Taha, A.A.; Wu, Y.-n.; Wang, H.; Li, F. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J. Environ. Manag. 2012, 112, 10–16. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, S.; Cai, J.; Zhang, L. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J. Phys. Chem. C 2010, 114, 7806–7811. [Google Scholar] [CrossRef]
- Rajesha, B.; Vishaka, V.H.; Balakrishna, G.R.; Padaki, M.; Nazri, N. Effective composite membranes of cellulose acetate for removal of benzophenone-3. J. Water Process Eng. 2019, 30, 100419. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Adsorption and desorption of Nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS ONE 2015, 10, e0117077. [Google Scholar]
- Abdul-Raheim, M.A.-R.; El-Saeed, S.M.; Farag, R.K.; Abdel-Raouf, M.E.; Reem, K. Low cost biosorbents based on modified starch iron oxide nanocomposites for selective removal of some heavy metals from aqueous solutions. Adv. Mater. Lett. 2016, 7, 402–409. [Google Scholar] [CrossRef]
- Janaki, V.; Vijayaraghavan, K.; Oh, B.-T.; Lee, K.-J.; Muthuchelian, K.; Ramasamy, A.; Kamala-Kannan, S. Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr. Polym. 2012, 90, 1437–1444. [Google Scholar] [CrossRef]
- Akter, M.; Hirase, N.; Sikder, M.T.; Rahman, M.M.; Hosokawa, T.; Saito, T.; Kurasaki, M. Pb(II) Remediation from Aqueous Environment Using Chitosan-Activated Carbon-Polyvinyl Alcohol Composite Beads. Water Air Soil Pollut. 2021, 232, 272. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Xu, B.; Liu, Y.; Qiu, H.; Lan, G.; Xu, Q. Synthesizing a Novel Zr/Fe/Al-Incorporated Cross-linked Chitosan as Absorbent for Effective Removal of Fluoride from Aqueous Solution. Water Air Soil Pollut. 2021, 232, 401. [Google Scholar] [CrossRef]
- Ma, F.; Zheng, L.; Chi, Y. Applications of biological flocculants (BFs) for coagulation treatment in water purification: Turbidity elimination. Chem. Biochem. Eng. Q. 2008, 22, 321–326. [Google Scholar]
- Sobeck, D.C.; Higgins, M.J. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527–538. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A.; Sahoo, D. Bioflocculation: An alternative strategy for harvesting of microalgae–An overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef]
- Galal, H.A.A. Long-term effect of mixed wastewater irrigation on soil properties, fruit quality and heavy metal contamination of citrus. Am. J. Environ. Prot. 2015, 3, 100–105. [Google Scholar]
- Kim, H.K.; Jang, T.I.; Kim, S.M.; Park, S.W. Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environ. Earth Sci. 2015, 73, 2377–2383. [Google Scholar] [CrossRef]
- Quan, G.; Fan, Q.; Cui, L.; Zimmerman, A.R.; Wang, H.; Zhu, Z.; Gao, B.; Wu, L.; Yan, J. Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption. Environ. Res. 2020, 183, 109241. [Google Scholar] [CrossRef]
- Sato, T.; Yamamoto, S.; Qadir, M.; Endo, T.; Masunaga, T.; Ahmad, Z. Long-term effects of wastewater irrigation on soil heavy metal contamination in Peri-urban areas of Aleppo, Syria. Int. J. Agric. Biol. 2014, 16, 1153–1158. [Google Scholar]
- Toader, G.; Pulpea, D.; Rotariu, T.; Diacon, A.; Rusen, E.; Moldovan, A.; Podaru, A.; Ginghina, R.; Alexe, F.; Iorga, O.; et al. Strippable Polymeric Nanocomposites Comprising “Green” Chelates, for the Removal of Heavy Metals and Radionuclides. Polymers 2021, 13, 4194. [Google Scholar] [CrossRef]
- Cui, X.; Fang, S.; Yao, Y.; Li, T.; Ni, Q.; Yang, X.; He, Z. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, Y.; Liu, S.; Zeng, G.; Tan, X.; Huang, B.; Tang, X.; Wang, S.; Hua, Q.; Yan, Z. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J. Colloid Interface Sci. 2017, 506, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-X.; Jiang, H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014, 48, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liu, L.; Zhang, S. Electrokinetic enhancement: Effect of sample stacking on strengthening heavy metal removal in electrokinetic remediation of municipal solid waste incineration fly ash. J. Environ. Eng. 2019, 145, 04018148. [Google Scholar] [CrossRef]
- Luo, M.; Lin, H.; He, Y.; Zhang, Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Sci. Total Environ. 2020, 717, 137014. [Google Scholar] [CrossRef]
- Voglar, D.; Lestan, D. Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling. Chemosphere 2013, 91, 76–82. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Alcantara, H.J.P.; Doronila, A.I.; Nicolas, M.; Ebbs, S.D.; Kolev, S.D. Growth of selected plant species in biosolids-amended mine tailings. Miner. Eng. 2015, 80, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Song, W.; Kazda, R. Fertilizer Value of Lime-Stabilized Biosolids as a Soil Amendment. Agron. J. 2012, 104, 1679–1686. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, S.P.C.; Strauss, M.; Martinez, D.S.T. The Positive Fate of Biochar Addition to Soil in the Degradation of PHBV-Silver Nanoparticle Composites. Environ. Sci. Technol. 2018, 52, 13845–13853. [Google Scholar] [CrossRef] [PubMed]
- Sherameti, I.; Varma, A. Heavy metal contamination of soils. In Soil Biology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 44. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Lin, H.-L. Remediation of soil contaminated with the heavy metal (Cd2+). J. Hazard. Mater. 2005, 122, 7–15. [Google Scholar] [CrossRef]
- Kondal, R.; Kalia, A.; Krejcar, O.; Kuca, K.; Sharma, S.P.; Luthra, K.; Dheri, G.S.; Vikal, Y.; Taggar, M.S.; Abd-Elsalam, K.A.; et al. Chitosan-Urea Nanocomposite for Improved Fertilizer Applications: The Effect on the Soil Enzymatic Activities and Microflora Dynamics in N Cycle of Potatoes (Solanum tuberosum L.). Polymers 2021, 13, 2887. [Google Scholar] [CrossRef]
- Tang, X.; Yu, C.; Lei, Y.; Wang, Z.; Wang, C.; Wang, J. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. J. Hazard. Mater. 2022, 426, 128083. [Google Scholar] [CrossRef]
- Arabyarmohammadi, H.; Darban, A.K.; Abdollahy, M.; Yong, R.; Ayati, B.; Zirakjou, A.; van der Zee, S.E.A.T.M. Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment. J. Polym. Environ. 2018, 26, 2107–2119. [Google Scholar]
- Zhang, D.; Xu, Y.; Li, X.; Liu, Z.; Wang, L.; Lu, C.; He, X.; Ma, Y.; Zou, D. Immobilization of Cr(VI) in soil using a montmorillonite-supported carboxymethyl cellulose-stabilized iron sulfide composite: Effectiveness and biotoxicity assessment. Int. J. Environ. Res. Public Health 2020, 17, 6087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, N.; Fang, Z. In Situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci. Technol. 2018, 77, 1622–1631. [Google Scholar] [CrossRef] [Green Version]
- Funada, M.; Nakano, T.; Moriwaki, H. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique. J. Hazard. Mater. 2018, 351, 232–239. [Google Scholar] [CrossRef]
- Hu, T.; Chen, W.-Z.; Bu, H.; Li, W.-X.; Li, Z.-L.; Liu, B.-N.; Lan, L.-M.; Guo, C.; Wang, Q.; Jiang, G.-B. A novel technique for Cd removal from soil based on alginate-derived floatable spheres. Chem. Eng. J. 2021, 414, 128777. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Peng, D.; Wang, Y.; He, T.; Tang, H.; Xu, H. Removal and recovery of heavy metals from soil with sodium alginate coated FeSSi nanocomposites in a leaching process. J. Hazard. Mater. 2020, 398, 122732. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Li, A.; Yang, H. Immobilization of metals in contaminated soils using natural polymer-based stabilizers. Environ. Pollut. 2017, 222, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wei, S.; Liu, Y.; Zhang, X.; Jiang, Z.; Tao, Y.; Zhang, G.; Zhang, B.; Wang, L.; Zhang, Y. Effective lead passivation in soil by bone char/CMC-stabilized FeS composite loading with phosphate-solubilizing bacteria. J. Hazard. Mater. 2022, 423, 127043. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef]
- Naderi, M.R.; Danesh-Shahraki, A. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 2013, 5, 2229. [Google Scholar]
- Chang, E.-H.; Chung, R.-S.; Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- van Herwijnen, R.; Hutchings, T.R.; Al-Tabbaa, A.; Moffat, A.J.; Johns, M.L.; Ouki, S.K. Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 2007, 150, 347–354. [Google Scholar] [CrossRef]
- Huang, J.; Kogbara, R.B.; Hariharan, N.; Masad, E.A.; Little, D.N. A state-of-the-art review of polymers used in soil stabilization. Constr. Build. Mater. 2021, 305, 124685. [Google Scholar] [CrossRef]
- Ingles, O.G.; Metcalf, J.B. Soil Stabilization Principles and Practice; Butterworths: London, UK, 1972. [Google Scholar]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Majid, M.Z.A.; Tahir, M.M.; Mohamad, E.T. Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—a review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Potential benefits of polymers in soil erosion control for agronomical plans: A laboratory experiment. Agronomy 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, S.; El Sayed, A.M. Physical properties of the organic polymeric blend (PVA/PAM) modified with MgO nanofillers. J. Compos. Mater. 2019, 53, 2831–2847. [Google Scholar] [CrossRef]
- Ou, K.; Dong, X.; Qin, C.; Ji, X.; He, J. Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater. Sci. Eng. C 2017, 77, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Koda, E.; Markiewicz, A.; Podlasek, A. Levels of Organic Pollution Indicators in Groundwater at the Old Landfill and Waste Management Site. Appl. Sci. 2017, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef]
- Selvaraj, C.; Singh, S.K. Eco-friendly Microbial Biopolymers: Recent Development, Biodegradation and Applications. In Microbial Polymers: Applications and Ecological Perspectives; Vaishnav, A., Choudhary, D.K., Eds.; Springer: Singapore, 2021; pp. 547–577. [Google Scholar]
- K, K.R.; Sardar, U.R.; Bhargavi, E.; Devi, I.; Bhunia, B.; Tiwari, O.N. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr. Polym. 2018, 199, 353–364. [Google Scholar] [CrossRef]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef]
- Zhu, M.; Xiong, R.; Huang, C. Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr. Polym. 2019, 205, 55–62. [Google Scholar] [CrossRef]
- Löndahl, J.; Massling, A.; Pagels, J.; Swietlicki, E.; Vaclavik, E.; Loft, S. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal. Toxicol. 2007, 19, 109–116. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2. 5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Dieme, D.; Cabral-Ndior, M.; Garçon, G.; Verdin, A.; Billet, S.; Cazier, F.; Courcot, D.; Diouf, A.; Shirali, P. Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal). Environ. Res. 2012, 113, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Galdos, M.; Cavalett, O.; Seabra, J.E.; Nogueira, L.A.H.; Bonomi, A. Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl. Energy 2013, 104, 576–582. [Google Scholar] [CrossRef]
- Pun, V.C.; Manjourides, J.; Suh, H.H. Close proximity to roadway and urbanicity associated with mental ill-health in older adults. Sci. Total Environ. 2019, 658, 854–860. [Google Scholar] [CrossRef]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Park, M.; Ding, B.; Kim, J.; El-Newehy, M.; Al-Deyab, S.S.; Kim, H.-Y. Facile electrospun polyacrylonitrile/poly (acrylic acid) nanofibrous membranes for high efficiency particulate air filtration. Fibers Polym. 2015, 16, 629–633. [Google Scholar] [CrossRef]
- Lv, S.; Zhao, X.; Shi, L.; Zhang, G.; Wang, S.; Kang, W.; Zhuang, X. Preparation and properties of sc-PLA/PMMA transparent nanofiber air filter. Polymers 2018, 10, 996. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, S.; Yin, X.; Yu, J.; Ding, B. Slip-effect functional air filter for efficient purification of PM2. 5. Sci. Rep. 2016, 6, 35472. [Google Scholar]
- Mamun, A.; Blachowicz, T.; Sabantina, L. Electrospun nanofiber mats for filtering applications—Technology, structure and materials. Polymers 2021, 13, 1368. [Google Scholar]
- Lee, T.; Ku, B.K.; Walker, R.; Kulkarni, P.; Barone, T.; Mischler, S. Aerodynamic size separation of glass fiber aerosols. J. Occup. Environ. Hyg. 2020, 17, 301–311. [Google Scholar] [CrossRef]
- Zhu, M.; Cao, Q.; Liu, B.; Guo, H.; Wang, X.; Han, Y.; Sun, G.; Li, Y.; Zhou, J. A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose 2020, 27, 3889–3902. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Z.; Zhou, R.; Ke, Q.; Huang, C. Fabrication of polypropylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology. J. Chem. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Schiffman, J.D.; Schauer, C.L. A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 2008, 48, 317–352. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Peresin, M.S.; Habibi, Y.; Vesterinen, A.-H.; Rojas, O.J.; Pawlak, J.J.; Seppälä, J.V. Effect of moisture on electrospun nanofiber composites of poly (Vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 2010, 11, 2471–2477. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Kim, J.; Ko, S.H. Advances in air filtration technologies: Structure-based and interaction-based approaches. Mater. Today Adv. 2021, 9, 100134. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Yin, X.; Yu, J.; Ding, B. Anti-deformed polyacrylonitrile/polysulfone composite membrane with binary structures for effective air filtration. ACS Appl. Mater. Interfaces 2016, 8, 8086–8095. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Z.; Sheng, J.; Al-Deyab, S.S.; Yu, J.; Ding, B. Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J. Colloid Interface Sci. 2014, 428, 41–48. [Google Scholar] [CrossRef]
- Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S.K.; Zhang, F.; et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017, 302, 1600353. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: A review. Polym. Chem. 2018, 9, 2685–2720. [Google Scholar] [CrossRef]
- Jiang, S.; Han, D.; Huang, C.; Duan, G.; Hou, H. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater. Lett. 2018, 216, 81–83. [Google Scholar] [CrossRef]
- Ouyang, W.; Liu, S.; Zhao, L.; Cao, L.; Jiang, S.; Hou, H. Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Compos. Commun. 2018, 9, 76–80. [Google Scholar] [CrossRef]
- Reich, S.; Burgard, M.; Langner, M.; Jiang, S.; Wang, X.; Agarwal, S.; Ding, B.; Yu, J.; Greiner, A. Polymer nanofibre composite nonwovens with metal-like electrical conductivity. Npj Flex. Electron. 2018, 2, 5. [Google Scholar] [CrossRef]
- Zhou, G.; Xiong, T.; Jiang, S.; Jian, S.; Zhou, Z.; Hou, H. Flexible titanium carbide–carbon nanofibers with high modulus and high conductivity by electrospinning. Mater. Lett. 2016, 165, 91–94. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Y.; Xie, J.; Jiang, Q.; Qiu, Y. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles. Powder Technol. 2016, 292, 54–63. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, C.; Hsu, P.-C.; Zhang, C.; Liu, N.; Zhang, J.; Lee, H.R.; Lu, Y.; Qiu, Y.; Chu, S.; et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Hsu, P.-C.; Liu, K.; Zhang, R.; Liu, Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett. 2016, 16, 1270–1275. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Zhao, X.; Yu, J.; Ding, B. Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration. Sep. Purif. Technol. 2015, 152, 14–22. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Wang, X.; Yu, J.; Ding, B. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration. J. Colloid Interface Sci. 2015, 457, 203–211. [Google Scholar] [CrossRef]
- Wan, H.; Wang, N.; Yang, J.; Si, Y.; Chen, K.; Ding, B.; Sun, G.; El-Newehy, M.; Al-Deyab, S.S.; Yu, J. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J. Colloid Interface Sci. 2014, 417, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shang, S.; Chiu, K.-L.; Jiang, S.; Dai, F. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/Graphene oxide microfiber mat via electrospinning for protective fabric. Mater. Sci. Eng. C 2019, 107, 110308. [Google Scholar] [CrossRef]
- Sun, J.; Bubel, K.; Chen, F.; Kissel, T.; Agarwal, S.; Greiner, A. Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. Macromol. Rapid Commun. 2010, 31, 2077–2083. [Google Scholar] [CrossRef]
- Sridhar, R.; Sundarrajan, S.; Vanangamudi, A.; Singh, G.; Matsuura, T.; Ramakrishna, S. Green processing mediated novel polyelectrolyte nanofibers and their antimicrobial evaluation. Macromol. Mater. Eng. 2014, 299, 283–289. [Google Scholar] [CrossRef]
- Assis, M.; Simoes, L.G.P.; Tremiliosi, G.C.; Coelho, D.; Minozzi, D.T.; Santos, R.I.; Vilela, D.C.B.; do Santos, J.R.; Ribeiro, L.K.; Rosa, I.L.V.; et al. SiO2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. Nanomaterials 2021, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Babu, K.; Garrison, T.F.; Capezza, A.J.; Olsson, R.T.; Ramakrishna, S.; Hedenqvist, M.S.; Singha, S.; Bartoli, M.; Giorcelli, M.; et al. Potential natural polymer-based nanofibres for the development of facemasks in countering viral outbreaks. J. Appl. Polym. Sci. 2021, 138, 50658. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.A.; Shaheen, B.S.; Ghanem, L.G.; Badawy, I.M.; Abodouh, M.M.; Abdou, S.M.; Zada, S.; Allam, N.K. Cost-Effective Face Mask Filter Based on Hybrid Composite Nanofibrous Layers with High Filtration Efficiency. Langmuir 2021, 37, 7492–7502. [Google Scholar] [CrossRef]
- Min, K.; Kim, S.; Kim, S. Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters. Sci. Rep. 2018, 8, 9598. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, S.; Wang, C.; Jeong, D.-Y.; Wang, Z.L.; Ren, K. Biodegradable electrospun poly (lactic acid) nanofibers for effective PM2.5 removal. Macromol. Mater. Eng. 2019, 304, 1900259. [Google Scholar] [CrossRef]
- Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Zhu, M.; Yu, S.; Sui, G.; Yang, X. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater. Sci. Eng. B 2016, 214, 1–10. [Google Scholar] [CrossRef]
- Lv, D.; Zhu, M.; Jiang, Z.; Jiang, S.; Zhang, Q.; Xiong, R.; Huang, C. Green electrospun nanofibers and their application in air filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar] [CrossRef]
- Zhu, M.; Hua, D.; Zhong, M.; Zhang, L.; Wang, F.; Gao, B.; Xiong, R.; Huang, C. Antibacterial and effective air filtration membranes by “green” electrospinning and citric acid crosslinking. Colloid Interface Sci. Commun. 2018, 23, 52–58. [Google Scholar] [CrossRef]
Type of Polymer or/and Nanocomposite | Water Performances/Mechanism | Soil Performances/Mechanism | References |
---|---|---|---|
Chitosan composite with magnesium oxide biochar (from rice husk), 2–22 nm. | 59.66 mg/g Cd adsorption favourable, separation factor (RL): 0 and 2 | 2% composite: reduced Cd content bioavailable by 22.32%, Cd extractable in acid by 24.77%, and increased Cd residual by 22.24%. | [1] |
Chitosan graft-copolymerized with montmorillonite rich bentonite | 0.1 g composite with 25 mg/L metal solutions (50 mL), pH values between 1 and 8. % removal: from 60 to 95 for Cu(II), 35 to 95 for Zn(II), 20 to 85 for Cd(II)and 30 to 70% for Ni(II). Monolayer adsorption (Langmuir isotherm model), 88.5 mg/g (Cu), 72.9 mg/g (Zn), 51.5 mg/g (Cd) and 48.5 mg/g (Ni). Desorption with 0.05 M–ineffective, EDTA and DTPA - > 90% adsorbed metals removals. | 1 g soil/0.1 g composite with metal retention capacity by 3.4, 3.2, 4.9 and 5.6-fold for Cu, Zn, Cd and Ni. The organic desorbing agents (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) > 90% adsorbed metals removal. [Ca(NO3)2] low desorption, suitable for metal immobilization. The Freundlich model described the adsorption process (N>1), metal adsorption capacity: 0.85 mg/g (Zn), 0.94 mg/g (Cu), 0.45 mg/g (Cd) and 0.42 mg/g (Ni). % Desorption lower for strongly adsorbed metal Cu (0.02% at 5 ppm to 0.27% at 50 ppm) than Zn (0.07% at 5 ppm to 3.03% at 50 ppm), Cd (0.2% at 5 ppm to 6.41% at 50 ppm), Ni (0.62% at 5 ppm to 5.58% at 50 ppm)—strong binding of metals by the chelating functional groups of the composite. | [2] |
Nano-fungal chitosan nanopaticles (NCt) (from cross-linking with sodium tripolyphosphate) and chitosan Cts (from Cunninghamella elegans fungus), 5–45 nm. | Pb: 87.51 mg/g (300 ppm) and Cu: 89.12 mg/g (300 ppm). | 0.25 and 0.5% NCt. Pb removal efficiencies for different samples: between 71.3 and 98.6%. Corresponding with bulk Cts: between 45.6 and 74.3%. Cu removal efficiencies for different samples: between 88.8% and 97.3%. | [3] |
Composite carboxylated graphene oxide/chitosan/cellulose beads, about d = 2 mm. | 22.4 mg/g Cu(II) for 40 μg/mL. | 99.6% Cu(II) immobilization efficiency for 60 mg/L (88.6% for soil alone). | [4] |
Type of Polymer or/and Its Nanocomposite | Water Pollutants and Performances | References |
---|---|---|
Chitosan/clay nanocomposite by dip-coating technique, with the lowest pore size for ultrafiltration membrane: 13 nm | 100% removal of 500 µg/L Hg(II) and 1000 µg/L As(III) | [95] |
Chitosan hollow fibers/nanosized Fe3O4 as Fenton-like catalysts | 89.4% removal of Reactive Blue 19 (RB 19) dye in continuous system and 74.4% for reused catalyst | [92] |
Graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite | Removal of dorzolamide (from pharmaceutical industry), 447 mg/g | [92,96] |
Chitosan/gum arabic/carbon nanotube (CNT) as beads and membrane functionalized, BET surface area: between 78 and 198 cm2/g | Removal of solids from waters | [97] |
Chitosan–montmorillonite membrane, with montmorillonite amount from 10% to 50% by mass. | Adsorbent for 80 mg/L Bezactiv orange V-3R dye, Qmax: 279.3 mg/g | [98] |
Magnetic mesoporous carbon/β-cyclodextrinechitosan | Removal of fluoroquinolones, efficiency 90.7–99.7%, 130–165 mg/g | [99] |
Glutaraldehyde cross-linked chitosan-coated Fe3O4 nanocomposites | Methylene blue (MB) removal, efficiency 96–98%, 758 mg/g | [100] |
Chitosan/polyvinyl alcohol (PVA)/zeolite nanocomposite | Congo red removal, efficiency 94%, 5.33 mg/g | [92,101] |
Quaternized chitosane organic rectorite intercalated composites | E. Coli removal, efficiency up to 90% | [102] |
Chitosane–zinc oxide nanocomposite | Removal of permethrin, efficiency 99% | [103] |
Polyethylene glycol (PEG)/chitosan nanocomposite | Removal of nitrates from waters, 50.58 mg/g | [92,104] |
Chitosan/Al2O3/Fe3O4 nanofiber | Phosphates removal, 135.1 mg/g | [105] |
Nano-SiO2-Cross-linked Chitosan-Nano-TiO2 nanocomposite | Removal of Hg, efficiency 98–99.5%, 1515.2 mg/g | [92,106] |
EPSs as bioflocculant and bio-adsorbent (bacterial cells and natural polysaccharides, lignins, proteins). | 1–10 mg/L EPS: 50% removal Pb(II) and Hg(II). 35 mg/L EPS: 72% Al, 40% Cu, 72% Fe, 85% Ni, and 45% Zn. Bacillus licheniformis as EPS strain used: 88% Cr (VI). Cloacibacterium normanense NK6: 73% Al(III), 36% Cu(II), 71% Fe(III), 85% Ni(II), and 65% Zn(II). Herbaspirillium sp: 26.6% As(III), 39.5% Zn(II), 31.4% Mn(II), 22.1% Al(III), 65.3% Fe(II), 25% Pb(II), and 94.9% Cr(II). Klebsiella pneumonia NY1 for municipal wastewater 72% suspended solids. Paenibacillus elgii B69 for municipal wastewater: 83% turbidity. Paenibacillus mucilaginosus for papermill wastewater: 81.5–88% suspended solids. | [55,57,107,108,109,110,111] |
Novel sodium alginate (SA) supported tetrasodium thiacalix [4] arene tetrasulfonate (TSTC[4]AS-s-SA) nanogel (50 nm) and superparamagnetic nanocomposite of SA(Fe3O4@TSTC[4]AS-s-SA) was fabricated from coprecipitation of SA-supported tetrasodiumthiacalix[4]arene tetrasulfonate and in situ generated Fe3O4 nanoparticles. | Pb(II) > Cd(II) > Cu(II) > Cr(III) > Co(II) > Ni(II) at pH = 7. Adsorption capacity mg/g and % removal with TSTC[4]AS-s-SA: mg/g (%) Co 64.5 (12.9), Cd 89.14 (17.82), Pb 84.5 (16.9), Cu 87.82 (17.56), Ni 62.9 (12.58), Cr3+ 77.3 (15.46). Fe3O4@TSTC[4]AS-s-SA mg/g (%): 74.9 (14.98), 94.5 (18.9), 99.8 (19.96), 90.56 (18.11), 67.4 (13.48), 79.2 (15.48) | [112] |
Novel adsorbent poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite by oxidative-free radical-graft copolymerization reaction. | 62.5 mg/g Pb(II) and 35.71 mg/g Cu(II) at pH 5. Freundlich model at 50 °C. | [113] |
Novel magnetic nanocomposite alginate beads, a3:4:1 aspect ratio (alginate: nanocomposite: xanthan gum) is used for fabrication of the beads. | The beads show removal percentage for phosphate at 97.9%, copper at 81.8%, and toluene at 43.4% and adsorption capacities of 60.24 mg/g, 120.77 mg/g and 25.52 mg/g, respectively. Isothermal studies show that the Langmuir isotherm model is the best governing equation for sorption. A pseudo-second-order model is the governing equation for the kinetics of sorption. The sorption process is also spontaneous and exothermic. The beads showed greater affinity in the order— > Cu2+ > toluene | [114] |
PVA/SA beads via blending PVA with SA and the glutaraldehyde as cross-linking agent. The zeolite nanoparticles (Zeo NPs) were incorporated in the PVA/SA resulting in Zeo/PVA | 99.5% Pb (II), 99.2% Cd(II), 98.8% Sr(II), 97.2% Cu(II), 95.6% Zn(II), 93.1% Ni(II), 92.4% Mn(II), 74.5% Li(II) for pH 6.0. 96.5% Fe(III), 94.9% Al(III) at pH 5 Natural wastewater samples: 60–99.8% of Al(III), Fe(III), Cr(III), Co(II), Cd(II), Zn(II), Mn(II), Ni(II), Cu(II), Li(II), Sr(II), Si(II), V(II), Pb(II). | [115] |
Cobalt ferrite—alginate nanocomposite synthesized, ex situ polymerization | 6.75 mg/g Reactive Red 195 and 6.06 mg/g Reactive Yellow 145 from a textile dye effluent in a binary component system | [116] |
PVA/graphene oxide (GO)-SA nanocomposite hydrogel beads, in situ cross-linking, 0.15–0.2 μm. | 279.43 mg/g Pb(II). Second-order kinetic model and Langmuir adsorption isotherm. | [117] |
Alginate beads | 107.53 mg/g Cu(II), 5 cycles of adsorption and desorption: 92% Cu(II). | [118] |
Alginate/montmorillonite beads | Removal of Pb, with maximum of 244.6 mg/g at pH 6 and minimum of 76.6 mg/g at pH 1. | [119] |
Alginate/Ag hydrogel, with Ag nanoparticles of 19 nm size | 213.7 mg/g MB, Langmuir adsorption. | [120] |
Cellulose/CuO nanoparticles | Microbial disinfection of waters: antibacterial activity against Gram-positive and Gram-negative bacteria. | [121] |
CA/Fe nanoparticle membrane | 99% CA—0.5% Fe nanoparticle blend ultrafiltration membrane applied for sulphates and organics removal, as biological oxygen demand (BOD) and chemical oxygen demand (COD) for textile industry effluent. | [92,122] |
NH2-functionalized CA/silica composite nanofibrous membranes by sol-gel combined with electrospinning technology | 19.46 mg/g as maximum adsorption capacity for Cr(VI) | [123] |
TiO2/cellulose composite films by sol-gel method | Catalyst for phenol degradation | [92,124] |
CA/Zinc oxide–Zeolite nanocomposite | Removal of Benzophenone-3, efficiency 98% | [125] |
Lignocellulose/montmorillonite nanocomposite | Removal of Ni, 94.86 mg/g | [126] |
Starch/Fe3O4 | Removal of Pb2+, Cu2+, and Ni2+ | [127] |
Starch/polyaniline nanocomposite | Removal of Reactive Black 5, efficiency 99%, 811.3 mg/g | [92,128] |
Chitosan/activated carbon/PVA (CS-AC-PVA) hybrid composite beads | Capacity of Pb2+ adsorbed was 0.2808 mg/g. The characteristics for Pb2+ adsorption process from aqueous environment were:
| [129] |
Zr/Fe/Al-modified chitosan beads | Adsorption capacity of fluoride was 37.49 mg/g | [130] |
Type of Polymer or/and Nanocomposite | Soil Pollutants and Performances | References |
---|---|---|
Chitosan and PVA were added to alginate (10 wt.%) and cross-linked with epichlorohydrin (ECH) | 70% adsorption efficiency, after 6 cycles of adsorption/desorption. | [151] |
Nano-chitosan–urea composite encapsulation of urea with the chitosan polymer, 33.39 ± 11.84 nm, and 113.55 ± 19.02 nm chitosan | 25% N as fertilizer required level as 75 kg N/ha recommended dose. Reducing with 3.36% ammonia-oxidizing bacteria (AOB) and 2.02% nitrate-reducing bacteria (NRB) | [152] |
Chitosan–urea encapsulated persulfate for low-release synthesized by an emulsion cross-linking method | 80% removal rate for pyrene in weakly acidic or neutral soil environments | [153] |
Novel chitosan/clay/biochar nanobiocomposite. Biochar mesopores (pores 2–50 nm) and mean pore diameter: 1.9842 nm. | 121.5 mg/g Cu, 336 mg/g Pb, and 134.6 mg/g Zn. Synthetic precipitation leaching procedure: 10 g soil with 10% nanobiocomposite in synthetic rain water (20 g/L), 24 h. Freundlich model for Cu(II) and Zn(II) and Temkin model for Pb(II). Immobilization: 100% (Cu), 100% (Zn), and 52.29% (Pb). | [154] |
Carboxymethyl cellulose (CMC) support for montmorillonite-stabilized iron sulfide composite | 90.7% Cr(VI) after 30 days, with 5% (composite–soil mass proportion), measured using the toxicity characteristic leaching procedure. | [155] |
CMC—nanozerovalent iron (CMC-nZVI), with 80–120 nm nZVI | Leachability: 100% Cr(VI) and 95.8% Cr total, with 2.5 g/Kg CMC-nZVI. Immobilization: 45.4% Crtotal and 17.9%Cr(VI) with 1 g/kg; 72.8% Crtotal and 58.6% Cr(VI) with 2.5 g/kg; 95.8% Crtotal and 100% Cr(VI) with 5 g/kg. | [156] |
CMC bone-char/CMC stabilized FeS composite = 1:1:1 | 452.99 mg/g, pH: 2.0–6.0, 65.47%. | [156] |
Alginate for composite powder: Fe-AC-alg | Over 96% efficiency with 1g composite for polycyclic aromatic hydrocarbons (PAHs) (anthracene (Ant), phenanthlene (Phe), fluoranthene (Flu), pyrene (Py), benz[a]anthrathene (BaA), chrysene (Chr), benzo[b]fluroranthene (BbF), benzo[k]fluroranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DahA), benzo[ghi]perylene (BghiP), and indeno(1,2,3-cd) pyrene (IP)). Low recovery (%) for Py (24), BaA (43), Chr (5.4), and BbF (3.9%). Other PAHs were not recovered. | [157] |
Alginate spheres with magnetic hollow carbon composite | 44.02% Cd removal with 1.5 g composite/60 g soil. Composite recyclability: 88.87% in flooding soil and 94.45% in non-flooding soil. | [158] |
SA gel beads incorporated silicon sulfuretted nanoscale zero valent iron (FeSSi) with specific surface 101.61 m2/g | Removal efficiency: 80.10% (Cd), 99.96% (Pb), 66.80% (Ni), and 80.46% (Cr) with pseudo-second-order model. Leaching tests for recovery rate (Rr) of heavy metals from solution (Rr/w) and soil (Rr/s): 59.79–98.70% and 25.94–62.67% with 0.3 g SA-FeSSi. | [159] |
Lignin, CMC, and SA amendments | Leaching concentrations: 5.46–71.1% and 4.26–49.6%, 1.0 g of soil, pH 2.88, 18 h, 30 rot/min. | [160] |
Pollutant | Type of Polymer | Performances/Mechanism | References |
---|---|---|---|
PM 2.5 and 10 μm | Uniform silk protein nanofibers by electrospinning process | Air filtration efficiencies: 90% and 97%, exceeding the performances of commercial semi high-efficiency particulate air (semi-HEPA) filters. Nanofibers are naturally degraded. | [217] |
PM 10 μm, including aerosol particles: DEHS (diisooctyl sebacate particles as organic particle matter) and NaCl (sodium chloride particles as inorganic matter) | Chitosan/PVA nanofibers with SiO2/Ag nanoparticles as air filtration nanofibrous membrane | Filtration efficiency: 96% for particles between 300 nm–1 μm and 100% for micron level particles. Composite membrane weights: between 1.48 and 6.2 g/m2 for filtration efficiency: NaCl particles from 42.97% (pressure drop is 33.67) to 96.60% (pressure drop is 305.67); DEHS particles from 51.01% (pressure drop: 33.67) to 99.12% (pressure drop: 296.17). | [178] |
PM 2.5 and 10 μm | Biodegradable electrospun PLLA polymer nanofibers for air filter applications. polymer nanofibers are ≈500 nm | Efficiency: 99.3%. Even after 6 h of filtration time, the PLLA filtration membrane still exhibits a 15% improvement in quality factor for PM 2.5 particles compared to the 3M respirator. Similarly for PM 10 particles, these quality factors of the (poly(D-lactic acid)) PDLA and poly(L-lactic acid)PLLA membranes exhibited 3% and 4.6% improvements compared to the 3M respirator after 6 h filtration time. Furthermore, the PLLA filter membrane also exhibited a high porosity of 91.9%, a specific surface area of 4.5 m2/g, and a dust-holding capacity of 7.36 g/m2. | [219] |
PM 2.5 | The average diameter of the electrospun nanofibers used was 239 nm, ranging from 113 to 398 nm. | Aerosol particles (diameters from 7 to 300 nm). Experimental results indicated that the nanofibers showed good permeability (10−11 m2) and high-efficiency filtration for aerosol nanoparticles (about 100%), which can include BC and the new coronavirus. The pressure drop was 1.8 kPa at 1.6 cm/s, which is similar to that reported for some high-efficiency nanofiber filters. In addition, it also retains BC particles present in air, which was about 90% for 375 nm and about 60% for the 880 nm wavelength. Additionally, nanofiber retention efficiencies for atmospheric PM 2.5 and BC were analyzed. | [43] |
PM 0.3, PM10 | ZnO@PVA/konjac glucomannan (KGM) membranes gelatin nanofiber, areal density of 3.43 g/m2 | ZnO@PVA/KGM filtration efficiency: 99.99% for ultrafine particles with the size of 300 nm. Gelatin nanofiber filtration efficiency: 99.3% (PM 0.3) and 100% (PM 2.5) | [189,219] |
PM 2.5, Escherichia coli | Soy protein isolate (SPI)/PVA electrospinning membrane | Filtration efficiency: 99.99% for PM < 2.5 µm and inhibiting effect on Escherichia coli | [220] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, E.; Predescu, A.M.; Râpă, M.; Țurcanu, A.A.; Mateș, I.; Constantin, N.; Predescu, C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials 2022, 12, 1707. https://doi.org/10.3390/nano12101707
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials. 2022; 12(10):1707. https://doi.org/10.3390/nano12101707
Chicago/Turabian StyleMatei, Ecaterina, Andra Mihaela Predescu, Maria Râpă, Anca Andreea Țurcanu, Ileana Mateș, Nicolae Constantin, and Cristian Predescu. 2022. "Natural Polymers and Their Nanocomposites Used for Environmental Applications" Nanomaterials 12, no. 10: 1707. https://doi.org/10.3390/nano12101707
APA StyleMatei, E., Predescu, A. M., Râpă, M., Țurcanu, A. A., Mateș, I., Constantin, N., & Predescu, C. (2022). Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials, 12(10), 1707. https://doi.org/10.3390/nano12101707