Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanofluids Sample’s Preparation
2.2. Transmission Electron Microscopy
2.3. UV-Spectroscopy
2.4. Thermogravimetric Analysis
2.5. pH
2.6. FT-IR Spectroscopy
3. Results
3.1. Nanoparticle’s Characterization
3.2. Nitrite Determination
3.3. Nanofluids Reaction Kinetics and Decomposition
4. Conclusions
- Detection of higher nitrite concentration (up to 4% wt.) than pure NaNO3 (up to 0.8% wt.), due to the presence of nanoparticles in the temperature range from 50 °C to 500 °C. Al2O3 nanoparticles cause a higher nitrate-nitrite conversion than SiO2 nanoparticles.
- The presence of nanoparticles increases thermal stability to over 600 °C before starting to decompose. In addition, with Al2O3 nanoparticles, weight loss at 900 °C was about 6% lower than NaNO3.
- Three main reaction stages were identified in the NaNO3 decomposition in accordance with the literature. These decomposition stages are altered by the presence of nanoparticles. First, SiO2 and Al2O3 nanoparticles reduce the decomposition temperatures of NaNO3-NaNO2-Na2O2 up to 7 °C. Even so, the reactions involved were accelerated by the presence of nanoparticles. Particularly, SiO2 NPs accelerate the reactions more than Al2O3 NPs. Second, the final decomposition to Na2O occurs at higher temperatures (up to 14 °C) than pure NaNO3. Nonetheless, the final decomposition takes place in shorter times.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Choi, S.U.S.; Li, S.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A.A.; Salehin, S.; Ehsan, M.M.; Khan, B.; Rahman, M.H. Synthesis, heat transport mechanisms and thermophysical properties of nanofluids: A critical overview. Int. J. Thermofluids 2021, 10, 100086. [Google Scholar] [CrossRef]
- Assael, M.J.; Antoniadis, K.D.; Wakeham, W.A.; Zhang, X. Potential applications of nanofluids for heat transfer. Int. J. Heat Mass Transf. 2019, 138, 597–607. [Google Scholar] [CrossRef]
- Svobodova-Sedlackova, A.; Barreneche, C.; Alonso, G.; Fernandez, A.I.; Gamallo, P. Effect of nanoparticles in molten salts—MD simulations and experimental study. Renew. Energy 2020, 152, 208–216. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Guclu, T.; Besir, A.B. On the use of nanofluids in solar energy applications. J. Therm. Sci. 2020, 29, 513–534. [Google Scholar] [CrossRef]
- Xiong, Q.; Hajjar, A.; Alshuraiaan, B.; Izadi, M.; Altnji, S.; Shehzad, S.A. State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. J. Clean. Prod. 2021, 310, 127528. [Google Scholar] [CrossRef]
- Du, R.; Jiang, D.D.; Wang, Y.; Shah, K.W. An experimental investigation of CuO/water nanofluid heat transfer in geothermal heat exchanger. Energy Build. 2020, 227, 110402. [Google Scholar] [CrossRef]
- Eltoum, H.; Yang, Y.L.; Hou, J.R. The effect of nanoparticles on reservoir wettability alteration: A critical review. Pet. Sci. 2021, 18, 136–153. [Google Scholar] [CrossRef]
- Yakasai, F.; Jaafar, M.Z.; Bandyopadhyay, S.; Agi, A. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms. J. Ind. Eng. Chem. 2021, 93, 138–162. [Google Scholar] [CrossRef]
- Han, X.; Thrush, S.J.; Zhang, Z.; Barber, G.C.; Qu, H. Tribological characterization of ZnO nanofluids as fastener lubricants. Wear 2021, 468–469, 203592. [Google Scholar] [CrossRef]
- Esfe, M.H.; Bahiraei, M.; Mir, A. Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv. Colloid Interface Sci. 2020, 282, 102199. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, G.; Ağbulut, Ü.; Gürel, A.E. A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems. Int. J. Refrig. 2021, 129, 342–364. [Google Scholar] [CrossRef]
- Parmar, H.B.; Juybari, H.F.; Yogi, Y.S.; Nejati, S.; Jacob, R.M.; Menon, P.S.; Warsinger, D.M. Nanofluids improve energy efficiency of membrane distillation. Nano Energy 2021, 88, 106235. [Google Scholar] [CrossRef]
- Yu, W.; Wang, T.; Park, A.H.A.; Fang, M. Review of liquid nano-absorbents for enhanced CO2 capture. Nanoscale 2019, 11, 17137–17156. [Google Scholar] [CrossRef] [PubMed]
- Peiró, G.; Gasia, J.; Miró, L.; Prieto, C.; Cabeza, L.F. Influence of the heat transfer fluid in a CSP plant molten salts charging process. Renew. Energy 2017, 113, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Wahab, A.; Hassan, A.; Arslan, M.; Babar, H.; Usman, M. Solar energy systems–Potential of nanofluids. J. Mol. Liq. 2019, 289, 111049. [Google Scholar] [CrossRef]
- Singh, T.; Hussien, M.A.A.; Al-Ansari, T.; Saoud, K.; McKay, G. Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies. Renew. Sustain. Energy Rev. 2018, 91, 708–719. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Sol. Energy Mater. Sol. Cells 2019, 192, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Nithiyanantham, U.; Grosu, Y.; González-Fernández, L.; Zaki, A.; Igartua, J.M.; Faik, A. Development of molten nitrate salt based nanofluids for thermal energy storage application: High thermal performance and long storage components life-time. In Proceedings of the SolarPACES2018-Concentrating Solar Power and Chemical Energy Systems, Casablanca, Morocco, 2–5 October 2018; American Institute of Physics: College Park, MD, USA, 2019; Volume 2126, p. 200025. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Li, B.; Sundén, B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J. Therm. Anal. Calorim. 2019, 136, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sánchez, B.; Nieto-Maestre, J.; Iparraguirre-Torres, I.; García-Romero, A.; Sala-Lizarraga, J.M. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature. Renew. Sustain. Energy Rev. 2018, 82, 3924–3945. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, X.; Li, Y.; Yu, G.; Xu, K.; Li, G. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3. Sol. Energy 2018, 160, 208–215. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures. J. Heat Transf. 2013, 135, 032801. [Google Scholar] [CrossRef]
- Schuller, M.; Shao, Q.; Lalk, T. Experimental investigation of the specific heat of a nitrate-alumina nanofluid for solar thermal energy storage systems. Int. J. Therm. Sci. 2015, 91, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.X.; Pan, C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity. Int. J. Heat Mass Transf. 2014, 70, 174–184. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.T.; di Zhang, L.; Wang, X.; Ma, C.F. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting. Sol. Energy Mater. Sol. Cells 2019, 191, 209–217. [Google Scholar] [CrossRef]
- Dudda, B.; Shin, D. Investigation of Molten Salt Nanomaterial As Thermal Energy Storage in Concentrated Solar Power. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; pp. 813–818. [Google Scholar]
- Awad, A.; Navarro, H.; Ding, Y.; Wen, D. Thermal-physical properties of nanoparticle-seeded nitrate molten salts. Renew. Energy 2018, 120, 275–288. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, S.; Tong, M.; Liu, Y. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 2012, 64, 199–205. [Google Scholar] [CrossRef]
- Xie, Q.; Zhu, Q.; Li, Y. Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets. Nanoscale Res. Lett. 2016, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Banerjee, D. A soft computing approach for estimating the specific heat capacity of molten salt-based nanofluids. J. Mol. Liq. 2019, 281, 365–375. [Google Scholar] [CrossRef]
- Lu, M.C.; Huang, C.H. Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale Res. Lett. 2013, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Pramod, K.; Balagi, N.; Saha, P.; Bharali, J.; Rao, P.V.C.; Choudary, N.V.; Ramesh, K. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications. Appl. Therm. Eng. 2016, 109, 901–905. [Google Scholar] [CrossRef]
- Myers, P.D.; Alam, T.E.; Kamal, R.; Goswami, D.Y.; Stefanakos, E. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Appl. Energy 2016, 165, 225–233. [Google Scholar] [CrossRef]
- Andreu-Cabedo, P.; Mondragon, R.; Hernandez, L.; Martinez-Cuenca, R.; Cabedo, L.; Julia, J. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res. Lett. 2014, 9, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarvghad, M.; Steinberg, T.A.; Will, G. Corrosion of stainless steel 316 in eutectic molten salts for thermal energy storage. Sol. Energy 2018, 172, 198–203. [Google Scholar] [CrossRef]
- Guillot, S.; Faik, A.; Rakhmatullin, A.; Lambert, J.; Veron, E.; Echegut, P.; Bessada, C.; Calvet, N.; Py, X. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy 2012, 94, 174–181. [Google Scholar] [CrossRef]
- Prieto, C.; Osuna, R.; Fernández, A.I.; Cabeza, L.F. Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences. Renew. Energy 2016, 99, 852–866. [Google Scholar] [CrossRef]
- Astm C 702-9; Standard Practice for Reducing Samples of Aggregate to Testing Size 1. ASTM International: West Conshohocken, PA, USA, 2003; Volume 4, pp. 700–703.
- Kumar, L.H.; Kazi, S.N.; Masjuki, H.H.; Zubir, M.N.M. A review of recent advances in green nanofluids and their application in thermal systems. Chem. Eng. J. 2022, 429, 132321. [Google Scholar] [CrossRef]
- Aljaerani, H.A.; Samykano, M.; Saidur, R.; Pandey, A.K.; Kadirgama, K. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review. J. Energy Storage 2021, 44, 103280. [Google Scholar] [CrossRef]
- Edwards, A.C.; Hooda, P.S.; Cook, Y. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem. 2001, 80, 49–59. [Google Scholar] [CrossRef]
- Wang, H.; Ju, A.; Wang, L. Ultraviolet Spectroscopic Detection of Nitrate and Nitrite in Seawater Simultaneously Based on Partial Least Squares. Molecules 2021, 26, 3685. [Google Scholar] [CrossRef]
- Dong, D.M.; Jiao, L.Z.; Zheng, W.G.; Wu, W.B.; Feng, H.K.; Shen, C.J.; Yan, H. Determination of nitrite using UV absorption spectra based on multiple linear regression. Asian J. Chem. 2013, 25, 2273–2277. [Google Scholar] [CrossRef]
- Riordan, E.; Minogue, N.; Healy, D.; O’Driscoll, P.; Sodeau, J.R. Spectroscopic and optimization modeling study of nitrous acid in aqueous solution. J. Phys. Chem. A 2005, 109, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Hammad, T.M. Infrared absorption spectra studies in (NaNO3-NaNO2) system. Ann. Phys. 2002, 11, 435–441. [Google Scholar] [CrossRef]
- Wen-Jui, L.; Min-Yi, S.; Chin-Hui, Y.; Yuan-Pern, L. Infrared absorption of cyclic-and trans-NaNO2 and KNO2 in solid argon. J. Chem. Phys. 1998, 104, 935. [Google Scholar]
- Berg, R.W.; Kerridge, D.H.; Larsen, P.H. NaNO2 + NaNO3 phase diagram: New data from DSC and Raman spectroscopy. J. Chem. Eng. Data 2006, 51, 34–39. [Google Scholar] [CrossRef]
- Hoshino, Y.; Utsunomiya, T.; Abe, O. The thermal descomposition of sodium nitrate and the effects of several oxides on the decomposition. Bull. Chem. Soc. Jpn. 1981, 54, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Gesi, K.; Takagi, Y. Study of the Phase Transition in NaNO2 by Polarized Infrared radiation. J. Phys. Soc. Soc. 1961, 16, 2172–2177. [Google Scholar] [CrossRef]
- Bauer, T.; Laing, D.; Tamme, R. Characterization of sodium nitrate as phase change material. Int. J. Thermophys. 2012, 33, 91–104. [Google Scholar] [CrossRef]
- Steinmann, W.-D. Thermal energy storage systems for concentrating solar power plants. In Concentrating Solar Power Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; pp. 399–440. ISBN 9780128199701. [Google Scholar]
- Ibrahim, A.; Peng, H.; Riaz, A.; Abdul Basit, M.; Rashid, U.; Basit, A. Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants. Sol. Energy Mater. Sol. Cells 2021, 219, 110768. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Chen, X.; Dong, H. A study on multistep thermal decomposition behavior and kinetics of magnesium nitrate hydrate. Thermochim. Acta 2021, 701, 178951. [Google Scholar] [CrossRef]
- Nissen, D.A.; Meeker, D.E. Nitrate/Nitrite Chemistry in NaNO3-KNO3 Melts. Inorg. Chem. 1983, 22, 716–721. [Google Scholar] [CrossRef]
- Freeman, E.S. The Kinetics of the thermal decomposition of sodium nitrate and of the reaction between sodium nitrite and oxigen. J. Phys. Chem. 1956, 60, 1487–1493. [Google Scholar] [CrossRef]
- Sötz, V.A.; Bonk, A.; Forstner, J.; Bauer, T. Microkinetics of the reaction NO3-⇌NO2-+0.5 O2 in molten sodium nitrate and potassium nitrate salt. Thermochim. Acta 2019, 678, 178301. [Google Scholar] [CrossRef]
- Villada, C.; Bonk, A.; Bauer, T.; Bolívar, F. High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres. Appl. Energy 2018, 226, 107–115. [Google Scholar] [CrossRef]
- Stern, K.H. High temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites. J. Phys. Chem. Ref. Data 1972, 1, 747–772. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, W.M.; Robinson, P.L.; Smith, H.C.; Briscoe, A.; Butkov, K.; Dagenhard, W.; Ievips, A. The thermal decomposition of sodium nitrate. Inorg. Phys. Theor. 1959, 1265–1268. [Google Scholar]
- Svobodova-Sedlackova, A.; Calderón, A.; Barreneche, C.; Gamallo, P.; Fernández, A.I. Understanding the abnormal thermal behavior of nanofluids through infrared thermography and thermo-physical characterization. Sci. Rep. 2021, 11, 4879. [Google Scholar] [CrossRef]
- Mondragón, R.; Juliá, J.E.; Cabedo, L.; Navarrete, N. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles. Sci. Rep. 2018, 8, 7532. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Zhang, X.; Fan, P.; Liu, L.; Li, B.; Dong, W.; Zhao, B. Calcined sodium silicate as an efficient and benign heterogeneous catalyst for the transesterification of natural lecithin to L-α-glycerophosphocholine. Green Process. Synth. 2019, 8, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Cherikkallinmel, S.K.; Gopalakrishnan, A.; Yaakob, Z.; Ramakrishnan, R.M.; Sugunan, S.; Narayanan, B.N. Sodium aluminate from waste aluminium source as catalyst for the transesterification of Jatropha oil. RSC Adv. 2015, 5, 46290–46294. [Google Scholar] [CrossRef]
Sample | NaNO3 | NaNO3/SiO2 NF | NaNO3/Al2O3 NF | |||
---|---|---|---|---|---|---|
Temperature | Abs. at 354 nm | Abs. at 354 nm | Abs. at 354 nm | |||
(°C) | a.u ± 0.001 | % wt. ± 0.2 | a.u ± 0.001 | % wt. ± 0.2 | a.u ± 0.001 | % wt. ± 0.2 |
100 | 0.213 | 0.2 | 0.387 | 2.6 | 0.395 | 2.7 |
150 | 0.231 | 0.4 | 0.432 | 3.3 | 0.374 | 2.5 |
200 | 0.232 | 0.5 | 0.411 | 3.0 | 0.360 | 2.3 |
250 | 0.218 | 0.3 | 0.442 | 3.4 | 0.420 | 3.1 |
300 | 0.232 | 0.5 | 0.425 | 3.2 | 0.493 | 4.1 |
350 | 0.239 | 0.5 | 0.429 | 3.2 | 0.461 | 3.7 |
400 | 0.225 | 0.4 | 0.348 | 2.1 | 0.459 | 3.6 |
450 | 0.257 | 0.8 | 0.406 | 2.9 | 0.440 | 3.4 |
500 | 0.232 | 0.5 | 0.378 | 2.5 | 0.434 | 3.3 |
Thermal Treatment (°C) | NaNO3 pH ± 0.01 | NaNO3/SiO2 NF pH ± 0.01 | NaNO3/Al2O3 NF pH ± 0.01 |
---|---|---|---|
50 | 5.76 | 5.52 | 6.08 |
100 | 5.83 | 6.25 | 6.18 |
150 | 5.92 | 5.73 | 6.17 |
200 | 5.77 | 5.51 | 6.34 |
250 | 5.78 | 5.98 | 6.31 |
300 | 5.99 | 6.03 | 6.52 |
350 | 5.78 | 6.42 | 6.84 |
400 | 6.08 | 6.67 | 6.74 |
450 | 5.88 | 6.88 | 6.81 |
500 | 5.93 | 6.96 | 6.69 |
Sample | NaNO3 | SiO2 | Al2O3 |
---|---|---|---|
Mass (mg) ± 0.01 | 13.74 | 14.27 | 14.55 |
First peak temperature (°C) ± 0.5 | 678.7 | 681.1 | 698.9 |
Weight loss at first peak (%) ± 1 | 18 | 20 | 27 |
Second peak temperature (°C) ± 0.5 | 774.8 | 775.2 | 755.0 |
Weight loss at second peak (%) ± 1 | 62 | 62 | 45 |
Third peak temperature (°C) ± 0.5 | - | - | 794.5 |
Weight loss at third peak (%) ± 1 | - | - | 3 |
Total weight loss between 507–840 °C (%) ± 1 | 80 | 81 | 75 |
Stage | Step | Fit Max. Peak | NaNO3 | NaNO3/SiO2 NF | NaNO3/Al2O3 NF | Reactive Processes |
---|---|---|---|---|---|---|
Value ± Std. Dev. | Value ± Std. Dev. | Value ± Std. Dev. | ||||
Stage I | I-A | Peak | Peak 1 | (1) (2) (3) | ||
Time (min.) | - | 56.2 ± 0.5 | - | |||
Temp. (°C) | - | 625.8 ± 0.5 | - | |||
I-B | Peak | Peak 1 | Peak 2 | Peak 1 | ||
Time (min.) | 70.56 ± 0.06 | 67.80 ± 0.06 | 70.34 ± 0.03 | |||
Temp. (°C) | 697.3 ± 0.5 | 683.0 ± 0.5 | 695.7 ± 0.5 | |||
Stage II | Peak | Peak 2 | Peak 3 | Peak 2 | (4) (5) (6) (7) (8) (9) (10) | |
Time (min.) | 80.66 ± 0.15 | 80.55 ± 0.07 | 79.28 ± 0.05 | |||
Temp. (°C) | 747.9 ± 0.5 | 747.0 ± 0.5 | 740.5 ± 0.5 | |||
Stage III | Peak | Peak 3 | Peak 4 | Peak 3 | (11) (12) (13) (14) (15) | |
III-A | Time (min.) | 87.17 ± 0.04 | 85.32 ± 0.05 | 82.876 ± 0.009 | ||
Temp. (°C) | 781.2 ± 0.5 | 771.4 ± 0.5 | 758.9 ± 0.5 | |||
Peak | Peak 5 | Peak 4 | ||||
III-B | Time (min.) | - | 87.966 ± 0.008 | 89.86 ± 0.03 | ||
Temp. (°C) | - | 785.4 ± 0.5 | 795.2 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svobodova-Sedlackova, A.; Huete-Hernández, S.; Calderón, A.; Barreneche, C.; Gamallo, P.; Fernandez, A.I. Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids. Nanomaterials 2022, 12, 1777. https://doi.org/10.3390/nano12101777
Svobodova-Sedlackova A, Huete-Hernández S, Calderón A, Barreneche C, Gamallo P, Fernandez AI. Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids. Nanomaterials. 2022; 12(10):1777. https://doi.org/10.3390/nano12101777
Chicago/Turabian StyleSvobodova-Sedlackova, Adela, Sergio Huete-Hernández, Alejandro Calderón, Camila Barreneche, Pablo Gamallo, and Ana Inés Fernandez. 2022. "Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids" Nanomaterials 12, no. 10: 1777. https://doi.org/10.3390/nano12101777
APA StyleSvobodova-Sedlackova, A., Huete-Hernández, S., Calderón, A., Barreneche, C., Gamallo, P., & Fernandez, A. I. (2022). Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids. Nanomaterials, 12(10), 1777. https://doi.org/10.3390/nano12101777