Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Device Characterization
3. Results and Discussion
3.1. Material Characterization
3.1.1. Wettability and Contact Angle
3.1.2. XRD and FESEM Analysis
3.1.3. Raman Spectroscopy and AFM Analysis
3.2. Electrical Characterization
3.2.1. Switching Characteristics
3.2.2. Tuning MR Switching Via Annealing Time
3.2.3. Tuning MR Switching via DC and Sweep Voltage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marani, R.; Gelao, G.; Perri, A.G. A review on memristor applications. arXiv 2015, arXiv:1506.06899. [Google Scholar]
- Zhao, Q.; Xie, Z.; Peng, Y.-P.; Wang, K.; Wang, H.; Li, X.; Wang, H.; Chen, J.; Zhang, H.; Yan, X. Current status and prospects of memristors based on novel 2D materials. Mater. Horizons 2020, 7, 1495–1518. [Google Scholar] [CrossRef]
- Abunahla, H.; Halawani, Y.; Alazzam, A.; Mohammad, B. NeuroMem: Analog graphene-based resistive memory for artificial neural networks. Sci. Rep. 2020, 10, 9473. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhao, C.; Qi, Y.; Mitrovic, I.Z.; Yang, L.; Wen, J.; Huang, Y.; Li, P.; Zhao, C. Memristive non-volatile memory based on graphene materials. Micromachines 2020, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abunahla, H.; Mohammad, B.; Mahmoud, L.; Darweesh, M.; Alhawari, M.; Abi Jaoude, M.; Hitt, G.W. Memsens: Memristor-based radiation sensor. IEEE Sens. J. 2018, 18, 3198–3205. [Google Scholar] [CrossRef]
- Carrara, S. The Birth of a New Field: Memristive Sensors. A Review. IEEE Sens. J. 2020, 21, 12370–12378. [Google Scholar] [CrossRef]
- Tzouvadaki, I.; Madaboosi, N.; Soares, R.; Chu, V.; Conde, J.; De Micheli, G.; Carrara, S. Bio-functionalization study of memristive-biosensors for early detection of prostate cancer. In Proceedings of the 2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 June–2 July 2015; pp. 17–20. [Google Scholar]
- Tzouvadaki, I.; Madaboosi, N.; Taurino, I.; Chu, V.; Conde, J.; De Micheli, G.; Carrara, S. Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. J. Mater. Chem. B 2016, 4, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Tzouvadaki, I.; Aliakbarinodehi, N.; De Micheli, G.; Carrara, S. The memristive effect as a novelty in drug monitoring. Nanoscale 2017, 9, 9676–9684. [Google Scholar] [CrossRef]
- Tian, K.; Prestgard, M.; Tiwari, A. A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef]
- Hadis, N.S.M.; Abd Manaf, A.; Herman, S.H.; Ngalim, S.H. High R off/R on ratio liquid based memristor sensor using sol gel spin coating technique. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 11–19. [Google Scholar]
- Yao, J.; Lin, J.; Dai, Y.; Ruan, G.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J.M. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 2012, 3, 1101. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.F.J.; Toral, L.A.; Ohata, A.; Morales, S.D.P.; García, R.F.J.; Godoy, M.A.; Rodríguez, S.N. Laser-Fabricated Reduced Graphene Oxide Memristors. Nanomaterials 2019, 9, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.K.; Kim, J.E.; Kim, S.O.; Choi, S.-Y.; Cho, B.J. Flexible resistive switching memory device based on graphene oxide. IEEE Electron Device Lett. 2010, 31, 1005–1007. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Porro, S.; Ricciardi, C. Memristive behaviour in inkjet printed graphene oxide thin layers. RSC Adv. 2015, 5, 68565–68570. [Google Scholar] [CrossRef]
- Porro, S.; Accornero, E.; Pirri, C.F.; Ricciardi, C. Memristive devices based on graphene oxide. Carbon 2015, 85, 383–396. [Google Scholar] [CrossRef]
- Aleksandrova, D. Five Benefits of Flexible Electronics for Displays and Sensors. FlexEnable. Available online: https://www.flexenable.com/blog/five-benefits-of-flexible-electronics-for-displays-and-sensors/ (accessed on 17 February 2020).
- Abunahla, H.; Mohammad, B.; Alazzam, A.; Jaoude, M.A.; Al-Qutayri, M.; Abdul Hadi, S.; Al-Sarawi, S.F. MOMSense: Metal-oxide-metal elementary glucose sensor. Sci. Rep. 2019, 9, 5524. [Google Scholar] [CrossRef] [PubMed]
- Alazzam, A. Solution-based, flexible and transparent patterned reduced graphene oxide electrodes for lab-on-chip applications. Nanotechnology 2019, 31, 075302. [Google Scholar] [CrossRef]
- Alamoodi, N.; Alazzam, A. Droplet Coalescence by Selective Wettability Enhancement in Microfluidic Devices. Nanomaterials 2020, 10, 737. [Google Scholar] [CrossRef] [Green Version]
- Alazzam, A.; Alamoodi, N. Microfluidic devices with patterned wettability using graphene oxide for continuous liquid–liquid two-phase separation. ACS Appl. Nano Mater. 2020, 3, 3471–3477. [Google Scholar] [CrossRef]
- Dawaymeh, F.; Abbas, Y.; Khaleel, M.; Alazzam, A.; Alamoodi, N. Tuning the Surface Wettability of Cyclic Olefin Copolymer by Plasma Treatment and Graphene Oxide Deposition and Reduction. Polymers 2021, 13, 2305. [Google Scholar] [CrossRef]
- El Fissi, L.; Vandormael, D.; Houssiau, L.; Francis, L.A. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO2 thin film. Appl. Surf. Sci. 2016, 363, 670–675. [Google Scholar] [CrossRef]
- Huang, H.-H.; De Silva, K.K.H.; Kumara, G.; Yoshimura, M. Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 2018, 8, 6849. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Panin, G.N.; Kapitanova, O.O.; Lee, S.W.; Baranov, A.N.; Kang, T.W. Resistive switching in Al/graphene oxide/Al structure. Jpn. J. Appl. Phys. 2011, 50, 70110. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral, A.; Medina-Rull, A.; Moraila-Martinez, C.L.; Morales, D.P.; Ohata, A.; Godoy, A.; Ruiz, F.G.; Rodriguez, N. Resistive switching in graphene oxide. Front. Mater. 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- van den Hurk, J.; Menzel, S.; Waser, R.; Valov, I. Processes and Limitations during Filament Formation and Dissolution in GeS x-based ReRAM Memory Cells. J. Phys. Chem. C 2015, 119, 18678–18685. [Google Scholar] [CrossRef]
- Mohammad, B.; Abi Jaoude, M.; Kumar, V.; Al Homouz, D.M.; Nahla, H.A.; Al-Qutayri, M.; Christoforou, N. State of the art of metal oxide memristor devices. Nanotechnol. Rev. 2016, 5, 311–329. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Xiao, B.; Mishra, S.; Killam, A.; Pradhan, A.K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Sci. Rep. 2016, 6, 26763. [Google Scholar] [CrossRef]
- Wei, H.; Zhou, P.; Sun, Q.; Wang, L.; Geng, Y.; Zhang, D.; Wang, X. The nano-scale resistive memory effect of graphene oxide. In Proceedings of the 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012), Waikiki Beach, HI, USA, 16–19 October 2012; pp. 54–57. [Google Scholar]
- Khurana, G.; Misra, P.; Katiyar, R.S. Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 2013, 114, 124508. [Google Scholar] [CrossRef]
- Qi, Y.; Shen, Z.; Zhao, C.; Mitrovic, I.; Xu, W.; Lim, E.; Yang, L.; He, J.; Luo, T.; Huang, Y. Resistive switching behavior of solution-processed AlOx and GO based RRAM at low temperature. Solid-State Electron. 2020, 168, 107735. [Google Scholar] [CrossRef]
- Ekiz, O.O.; Urel, M.; Guner, H.; Mizrak, A.K.; Dana, A. Reversible electrical reduction and oxidation of graphene oxide. Acs Nano 2011, 5, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Slobodian, O.M.; Lytvyn, P.M.; Nikolenko, A.S.; Naseka, V.M.; Khyzhun, O.Y.; Vasin, A.V.; Sevostianov, S.V.; Nazarov, A.N. Low-temperature reduction of graphene oxide: Electrical conductance and scanning kelvin probe force microscopy. Nanoscale Res. Lett. 2018, 13, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abujabal, M.; Abunahla, H.; Mohammad, B.; Alazzam, A. Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction. Nanomaterials 2022, 12, 1812. https://doi.org/10.3390/nano12111812
Abujabal M, Abunahla H, Mohammad B, Alazzam A. Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction. Nanomaterials. 2022; 12(11):1812. https://doi.org/10.3390/nano12111812
Chicago/Turabian StyleAbujabal, Muayad, Heba Abunahla, Baker Mohammad, and Anas Alazzam. 2022. "Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction" Nanomaterials 12, no. 11: 1812. https://doi.org/10.3390/nano12111812
APA StyleAbujabal, M., Abunahla, H., Mohammad, B., & Alazzam, A. (2022). Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction. Nanomaterials, 12(11), 1812. https://doi.org/10.3390/nano12111812