Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures
Abstract
:1. Introduction
2. Simulation Details
2.1. SCC-DFTB Method
2.2. Models of 3D Pillared SiC Nanostructures and Calculation Details
2.3. Interaction of 3D Pillared SiC Nanostructure and Gas Molecules
3. Results and Discussion
3.1. Structural Properties of 3D Pillared SiC Nanostructures
3.2. Electronic Properties of 3D Pillared SiC Nanostructures
3.3. Gas Permeability of 3D Pillared SiC Nanostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casady, J.B.; Johnson, R.W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Maboudian, R.; Carraro, C.; Senesky, D.G.; Roper, C.S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 2013, 31, 050805. [Google Scholar] [CrossRef]
- Chen, X.; Guo, X.; Wu, W.; Fan, J. Quasi-White Light-Emitting Devices Based on SiC Quantum Dots. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2018, 12, 1800171. [Google Scholar] [CrossRef]
- Cao, Y.; Dong, H.; Pu, S.; Zhang, X. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Res. 2018, 11, 4074–4081. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Teker, K. Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector. J. Alloys Compd. 2021, 868, 159255. [Google Scholar] [CrossRef]
- Zekentes, K.; Choi, J.; Stambouli, V.; Bano, E.; Karker, O.; Rogdakis, K. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications. Microelectron. Eng. 2022, 255, 111704. [Google Scholar] [CrossRef]
- Sun, L.; Wang, B.; Wang, Y. A Novel Silicon Carbide Nanosheet for High-Performance Humidity Sensor. Adv. Mater. Interfaces 2018, 5, 1701300. [Google Scholar] [CrossRef]
- Dadkhah, M.; Tulliani, J.-M. Nanostructured Metal Oxide Semiconductors towards Greenhouse Gas Detection. Chemosensors 2022, 10, 57. [Google Scholar] [CrossRef]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef]
- Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 2022, 193, 106673. [Google Scholar] [CrossRef]
- Rezk, M.Y.; Sharma, J.; Gartia, M.R. Nanomaterial-Based CO2 Sensors. Nanomaterials 2020, 10, 2251. [Google Scholar] [CrossRef]
- Usman, M.; Humayun, M.; Garba, M.D.; Ullah, L.; Zeb, Z.; Helal, A.; Suliman, M.H.; Alfaifi, B.Y.; Iqbal, N.; Abdinejad, M.; et al. Electrochemical Reduction of CO2: A Review of Cobalt Based Catalysts for Carbon Dioxide Conversion to Fuels. Nanomaterials 2021, 11, 2029. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- García, A.C.; Moral-Vico, J.; Abo Markeb, A.; Sánchez, A. Conversion of Carbon Dioxide into Methanol Using Cu-Zn Nanostructured Materials as Catalysts. Nanomaterials 2022, 12, 999. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, H.; Roldán, D.; Sacco, A.; Castellino, M.; Fontana, M.; Russo, N.; Hernández, S. CuZnAl-Oxide Nanopyramidal Mesoporous Materials for the Electrocatalytic CO2 Reduction to Syngas: Tuning of H2/CO Ratio. Nanomaterials 2021, 11, 3052. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Heagy, M.D. Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials 2020, 10, 2422. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Powar, N.S.; In, S.-I. Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials 2020, 10, 2569. [Google Scholar] [CrossRef]
- Desport, L.; Selosse, S. An overview of CO2 capture and utilization in energy models. Resour. Conserv. Recycl. 2022, 180, 106150. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Derakhsheshpour, R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J. CO2 Util. 2022, 55, 101799. [Google Scholar] [CrossRef]
- Challiwala, M.S.; Choudhury, H.A.; Wang, D.; El-Halwagi, M.M.; Weitz, E.; Elbashir, N.O. A novel CO2 utilization technology for the synergistic co-production of multi-walled carbon nanotubes and syngas. Sci. Rep. 2021, 11, 1417. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Wei, Q.; Lucero, J.M.; Crawford, J.M.; Way, J.D.; Wolden, C.A.; Carreon, M.A. Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. J. Membr. Sci. 2021, 623, 119078. [Google Scholar] [CrossRef]
- Esser, T.; Wolf, T.; Schubert, T.; Benra, J.; Forero, S.; Maistros, G.; Barbe, S.; Theodorakopoulos, G.V.; Karousos, D.S.; Sapalidis, A.A.; et al. CO2/CH4 and He/N2 Separation Properties and Water Permeability Valuation of Mixed Matrix MWCNTs-Based Cellulose Acetate Flat Sheet Membranes: A Study of the Optimization of the Filler Material Dispersion Method. Nanomaterials 2021, 11, 280. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Polymeric membranes for CO2 separation and capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Khan, F.I.; Ghoshal, A.K. Removal of Volatile Organic Compounds from polluted air. J. Loss Prev. Process Ind. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S. A review on cleaner approach for effective separation of toxic pollutants from wastewater using carbon Sphere’s as adsorbent: Preparation, activation and applications. J. Clean. Prod. 2021, 291, 125911. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. J. Hazard. Mater. 2021, 418, 126299. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Liang, X.; Yuan, J.; Yang, H.; Wang, S.; Ren, Y.; Wu, H.; Pan, F.; Jiang, Z. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 2021, 50, 5468–5516. [Google Scholar] [CrossRef]
- Azamat, J.; Khataee, A. Separation of CH4/C2H6 Mixture Using Functionalized Nanoporous Silicon Carbide Nanosheet. Energy Fuels 2018, 32, 7508–7518. [Google Scholar] [CrossRef]
- Eray, E.; Candelario, V.M.; Boffa, V.; Safafar, H.; Stedgaard-Munck, D.N.; Zahrtmann, N.; Kadrispahic, H.; Jørgensen, M.K. A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives. Chem. Eng. J. 2021, 414, 128826. [Google Scholar] [CrossRef]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Frauenheim, T.; Seifert, G.; Elsterner, M.; Hajnal, Z.; Jungnickel, G.; Porezag, D.; Suhai, S.; Scholz, R. A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology. Phys. Status Solidi (B) 2000, 217, 41–62. [Google Scholar] [CrossRef]
- Gaus, M.; Cui, Q.; Elstner, M. DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB). J. Chem. Theory Comput. 2011, 7, 931–948. [Google Scholar] [CrossRef] [Green Version]
- Wongchoosuk, C.; Wang, Y.; Kerdcharoen, T.; Irle, S. Nonequilibrium quantum chemical molecular dynamics simulations of C60 to SiC heterofullerene conversion. Carbon 2014, 68, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y.; Ohta, Y. Annihilation dynamics of a dislocation pair in graphene: Density-functional tight-binding molecular dynamics simulations and first principles study. Comput. Mater. Sci. 2022, 205, 111224. [Google Scholar] [CrossRef]
- Marutaphan, A.; Seekaew, Y.; Wongchoosuk, C. Self-Consistent Charge Density Functional Tight-Binding Study of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Ammonia Gas Sensor. Nanoscale Res. Lett. 2017, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Kondee, S.; Arayawut, O.; Pon-On, W.; Wongchoosuk, C. Nitrogen-doped carbon oxide quantum dots for flexible humidity sensor: Experimental and SCC-DFTB study. Vacuum 2022, 195, 110648. [Google Scholar] [CrossRef]
- Arunragsa, S.; Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Hydroxyl edge-functionalized graphene quantum dots for gas-sensing applications. Diam. Relat. Mater. 2020, 105, 107790. [Google Scholar] [CrossRef]
- Timsorn, K.; Wongchoosuk, C. Inkjet printing of room-temperature gas sensors for identification of formalin contamination in squids. J. Mater. Sci. Mater. Electron. 2019, 30, 4782–4791. [Google Scholar] [CrossRef]
- Rauls, E.; Elsner, J.; Gutierrez, R.; Frauenheim, T. Stoichiometric and non-stoichiometric (1010) and (1120) surfaces in 2H–SiC: A theoretical study. Solid State Commun. 1999, 111, 459–464. [Google Scholar] [CrossRef]
- Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Theoretical investigation of carbon defects and diffusion in alpha-quartz. Phys. Rev. B 2001, 64, 085333. [Google Scholar] [CrossRef] [Green Version]
- Bekaroglu, E.; Topsakal, M.; Cahangirov, S.; Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 2010, 81, 075433. [Google Scholar] [CrossRef] [Green Version]
- Budyka, M.F.; Zyubina, T.S.; Ryabenko, A.G.; Lin, S.H.; Mebel, A.M. Bond lengths and diameters of armchair single wall carbon nanotubes. Chem. Phys. Lett. 2005, 407, 266–271. [Google Scholar] [CrossRef]
- Shayeganfar, F.; Shahsavari, R. Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab-initio calculations and elasticity theory. Carbon 2016, 99, 523–532. [Google Scholar] [CrossRef]
- Sakhavand, N.; Shahsavari, R. Synergistic Behavior of Tubes, Junctions, and Sheets Imparts Mechano-Mutable Functionality in 3D Porous Boron Nitride Nanostructures. J. Phys. Chem. C 2014, 118, 22730–22738. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Weinert, M.; Davenport, J.W. Fractional occupations and density-functional energies and forces. Phys. Rev. B 1992, 45, 13709–13712. [Google Scholar] [CrossRef]
- Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.Y.; Dumitrică, T.; Dominguez, A.; et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101. [Google Scholar] [CrossRef]
- Wu, L.; Han, Y.; Li, W.; Chen, S.; Zhao, Q.; Shen, L. Stable nanotube construction conditions and electronic properties of possible Si double-walled nanotubes (nin,min)@(6,mout) (nin =3, 4) by SCC-DFTB calculations. Mater. Chem. Phys. 2022, 277, 125545. [Google Scholar] [CrossRef]
- Ashino, M.; Wiesendanger, R. Attractive force-driven superhardening of graphene membranes as a pin-point breaking of continuum mechanics. Sci. Rep. 2017, 7, 46083. [Google Scholar] [CrossRef] [Green Version]
- Seekaew, Y.; Arayawut, O.; Timsorn, K.; Wongchoosuk, C. Chapter Nine—Synthesis, Characterization, and Applications of Graphene and Derivatives. In Carbon-Based Nanofillers and Their Rubber Nanocomposites; Yaragalla, S., Mishra, R., Thomas, S., Kalarikkal, N., Maria, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–283. [Google Scholar] [CrossRef]
- Chabi, S.; Kadel, K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials 2020, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Melchor, S. TubeAnalyzer; Universidad de Granada: Granada, Spain, 2007. [Google Scholar]
- Martín-Martínez, F.J.; Melchor, S.; Dobado, J.A. Edge effects, electronic arrangement, and aromaticity patterns on finite-length carbon nanotubes. Phys. Chem. Chem. Phys. 2011, 13, 12844–12857. [Google Scholar] [CrossRef] [PubMed]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuators B Chem. 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Larina, E.V.; Chmyrev, V.I.; Skorikov, V.M.; D’yachkov, P.N.; Makaev, D.V. Band structure of silicon carbide nanotubes. Inorg. Mater. 2008, 44, 823. [Google Scholar] [CrossRef]
- Wu, I.J.; Guo, G.Y. Optical properties of SiC nanotubes: An ab initio study. Phys. Rev. B 2007, 76, 035343. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.M.; Ray, A.K. Hybrid density functional study of armchair SiC nanotubes. Phys. Rev. B 2008, 77, 035436. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Meyer, H.-D.; Cederbaum, L.S. Potential energy surface of the CO2− anion. Phys. Chem. Chem. Phys. 2004, 6, 42–45. [Google Scholar] [CrossRef]
- Shahtalebi, A.; Shukla, P.; Farmahini, A.H.; Bhatia, S.K. Barriers to diffusion of CO2 in microporous carbon derived from silicon carbide. Carbon 2015, 88, 1–15. [Google Scholar] [CrossRef]
- Farmahini, A.H.; Shahtalebi, A.; Jobic, H.; Bhatia, S.K. Influence of structural heterogeneity on diffusion of CH4 and CO2 in silicon carbide-derived nanoporous Carbon. J. Phys. Chem. C 2014, 118, 11784–11798. [Google Scholar] [CrossRef]
- Zhao, J.; Buldum, A.; Han, J.; Lu, J.P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 2002, 13, 195–200. [Google Scholar] [CrossRef]
- Králik, M. Adsorption, chemisorption, and catalysis. Chem. Pap. 2014, 68, 1625–1638. [Google Scholar] [CrossRef]
- Mehmood, F.; Kara, A.; Rahman, T.S.; Bohnen, K.P. Energetics of CO on stepped and kinked Cu surfaces: A comparative theoretical study. Phys. Rev. B 2006, 74, 155439. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, H.; Kara, A. Effect of van der Waals interactions on the adsorption of olympicene radical on Cu (111): Characteristics of weak physisorption versus strong chemisorption. J. Phys. Chem. C 2013, 117, 2893–2902. [Google Scholar] [CrossRef]
Unit Cell | The Pillar Length (Å) | |||
---|---|---|---|---|
3D Pillared SiC Nanostructures | 3D Pillared C Nanostructures | |||
Before Geometry Optimization | After Geometry Optimization | Before Geometry Optimization | After Geometry Optimization | |
1 | 3.32 | 3.84 | 2.46 | 9.02 |
2 | 12.65 | 12.00 | 5.24 | 9.35 |
3 | 9.80 | 15.66 | 7.64 | 13.06 |
4 | 13.11 | 18.42 | 10.23 | 14.87 |
5 | 16.40 | 22.06 | 12.41 | 16.67 |
6 | 19.69 | 24.05 | 14.98 | 20.45 |
7 | 23.02 | 27.10 | 17.33 | 21.79 |
8 | 26.32 | 31.34 | 19.89 | 24.06 |
Armchair Nanotubes | The Pillar Diameter (Å) | |||
---|---|---|---|---|
3D Pillared SiC Nanostructures | 3D Pillared C Nanostructure | |||
Before Geometry Optimization | After Geometry Optimization | Before Geometry Optimization | After Geometry Optimization | |
(3,3) | 4.01 | 6.25 | - | - |
(4,4) | 5.42 | 8.80 | - | - |
(5,5) | 9.11 | 10.59 | - | - |
(6,6) | 10.74 | 12.73 | 8.14 | 9.92 |
Gas Molecules | H2O | CO2 | N2 | NO | O2 | NO2 |
---|---|---|---|---|---|---|
Diameter (Å) | 1.56 | 2.34 | 1.12 | 1.16 | 1.22 | 2.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arayawut, O.; Kerdcharoen, T.; Wongchoosuk, C. Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures. Nanomaterials 2022, 12, 1869. https://doi.org/10.3390/nano12111869
Arayawut O, Kerdcharoen T, Wongchoosuk C. Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures. Nanomaterials. 2022; 12(11):1869. https://doi.org/10.3390/nano12111869
Chicago/Turabian StyleArayawut, Onsuda, Teerakiat Kerdcharoen, and Chatchawal Wongchoosuk. 2022. "Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures" Nanomaterials 12, no. 11: 1869. https://doi.org/10.3390/nano12111869
APA StyleArayawut, O., Kerdcharoen, T., & Wongchoosuk, C. (2022). Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures. Nanomaterials, 12(11), 1869. https://doi.org/10.3390/nano12111869