Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials
Abstract
:1. Introduction
2. PT Theory for Thermal Property Measurements
2.1. Physical Model Derivation
2.2. Phase Shift and Amplitude
3. Experimental Implementation of PT Method for Thermal Property Measurements
3.1. Experimental Setup
3.2. System Calibration
3.3. Uncertainty
4. PT Measurement of Nanomaterials
4.1. Nanostructure Analysis through Thermal Characterization
4.2. Porosity Determination in Nanostructures
4.3. Nano-Crystalline Structure Evolution under Heating
4.4. Considerations in the Measurement of Micro-/Nanomaterials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abad, B.; Borca-Tasciuc, D.A.; Martin-Gonzalez, M.S. Non-contact methods for thermal properties measurement. Renew. Sustain. Energy Rev. 2017, 76, 1348–1370. [Google Scholar] [CrossRef]
- Liu, J.; Han, M.; Wang, R.; Xu, S.; Wang, X. Photothermal phenomenon: Extended ideas for thermophysical properties characterization. J. Appl. Phys. 2022, 131, 065107. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69. [Google Scholar] [CrossRef]
- Campbell, S.D.; Yee, S.S.; Afromowitz, M.A. Applications of Photoacoustic-Spectroscopy to Problems in Dermatology Research. IEEE Trans. Biomed. Eng. 1979, 26, 220–227. [Google Scholar] [CrossRef]
- Bennett, C.A.; Patty, R.R. Thermal Wave Interferometry—A Potential Application of the Photo-Acoustic Effect. Appl. Opt. 1982, 21, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Wang, R.; Zobeiri, H.; Wang, T.; Xu, S.; Wang, X. The in-plane structure domain size of nm-thick MoSe2 uncovered by low-momentum phonon scattering. Nanoscale 2021, 13, 7723–7734. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, D.; Wang, W.; Liu, J.; Holub, K.W.; Yang, R. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J. Appl. Phys. 2010, 108, 094315. [Google Scholar] [CrossRef]
- Zobeiri, H.; Wang, R.; Wang, T.; Lin, H.; Deng, C.; Wang, X. Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2. Int. J. Heat Mass Transf. 2019, 133, 1074–1085. [Google Scholar] [CrossRef]
- Hu, H.; Wang, X.; Xu, X. Generalized theory of the photoacoustic effect in a multilayer material. J. Appl. Phys. 1999, 86, 3953–3958. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, W.; Xu, J.; Dong, Y. General analytical solution for photoacoustic effect with multilayers. Appl. Phys. Lett. 2008, 92, 014103. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.; Xu, X. Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials. J. Heat Trans. 2001, 123, 138–144. [Google Scholar] [CrossRef]
- Cahill, D.G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar] [CrossRef]
- Capinski, W.S.; Maris, H.J.; Ruf, T.; Cardona, M.; Ploog, K.; Katzer, D.S. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 1999, 59, 8105–8113. [Google Scholar] [CrossRef]
- Schmidt, A.J.; Cheaito, R.; Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 2009, 80, 094901. [Google Scholar] [CrossRef]
- Regner, K.T.; Sellan, D.P.; Su, Z.; Amon, C.H.; McGaughey, A.J.H.; Malen, J.A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 2013, 4, 1640. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cola, B.A.; Bougher, T.; Hodson, S.L.; Fisher, T.S.; Xu, X. Photoacoustic technique for thermal conductivity and thermal interface measurements. Annu. Rev. Heat Trans. 2013, 16, 135–157. [Google Scholar] [CrossRef]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Ohta, H.; Shibata, H.; Suzuki, A.; Waseda, Y. Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature. Rev. Sci. Instrum. 2001, 72, 1899–1903. [Google Scholar] [CrossRef]
- Lindemann, A.; Blumm, J.; Brunner, M. Current limitations of commercial laser flash techniques for highly conducting materials and thin films. High Temp. High Press. 2014, 43, 243–252. [Google Scholar]
- Larson, K.B.; Koyama, K. Correction for finite-pulse-time effects in very thin samples using the flash method of measuring thermal diffusivity. J. Appl. Phys. 1967, 38, 465–474. [Google Scholar] [CrossRef]
- Tang, X.; Xu, S.; Zhang, J.; Wang, X. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interfaces 2014, 6, 2809–2818. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, J.; Wang, X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 2011, 7, 3324–3333. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Fan, A.; Wang, H.; Zhang, X.; Wang, X. Raman-based Nanoscale Thermal Transport Characterization: A Critical Review. Int. J. Heat Mass Transf. 2020, 154, 119751. [Google Scholar] [CrossRef]
- Xu, S.; Wang, T.; Hurley, D.; Yue, Y.; Wang, X. Development of time-domain differential Raman for transient thermal probing of materials. Opt. Express 2015, 23, 10040–10056. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Xie, Y. Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm. Phys. Chem. Chem. Phys. 2018, 20, 25752–25761. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.F.; Wang, Y.Y.; Zhao, Y.; Jiang, J.; Yu, K.; Liang, Y.; Zhong, B.; Ren, S.T.; Gao, R.X.; Zou, M.Q. Measurement of interfacial thermal conductance of few-layer MoS2 supported on different substrates using Raman spectroscopy. J. Appl. Phys. 2020, 127, 104301. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, D.; Li, Y.; Lee, G.H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T.F.; Hone, J.C. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Inter. 2015, 7, 25923–25929. [Google Scholar] [CrossRef] [Green Version]
- Zobeiri, H.; Hunter, N.; Van Velson, N.; Deng, C.; Zhang, Q.; Wang, X. Interfacial thermal resistance between nm-thick MoS2 and quartz substrate: A critical revisit under phonon mode-wide thermal non-equilibrium. Nano Energy 2021, 89, 106364. [Google Scholar] [CrossRef]
- Zobeiri, H.; Hunter, N.; Wang, R.; Wang, T.; Wang, X. Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation. Adv. Sci. 2021, 8, 2004712. [Google Scholar] [CrossRef]
- Zobeiri, H.; Wang, R.; Zhang, Q.; Zhu, G.; Wang, X. Hot carrier transfer and phonon transport in suspended nm WS2 films. Acta Mater. 2019, 175, 222–237. [Google Scholar] [CrossRef]
- Zobeiri, H.; Xu, S.; Yue, Y.; Zhang, Q.; Xie, Y.; Wang, X. Effect of temperature on Raman intensity of nm-thick WS2: Combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale 2020, 12, 6064–6078. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhong, Z.; Xu, J. Noncontact thermal characterization of multiwall carbon nanotubes. J. Appl. Phys. 2005, 97, 064302. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, X. Across-plane thermal characterization of films based on amplitude-frequency profile in photothermal technique. AIP Adv. 2014, 4, 107122. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, Y.; Suhir, E.; Wang, X. Thermal properties of carbon nanotube array used for integrated circuit cooling. J. Appl. Phys. 2006, 100, 074302. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; He, Y.; Zhao, Y.; Wang, X. Thermophysical properties of hydrogenated vanadium-doped magnesium porous nanostructures. Nanotechnology 2009, 21, 055707. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Z.; Starrett, J.; Hayashi, C.; Wang, X. Cross-plane thermal transport in micrometer-thick spider silk films. Polymer 2014, 55, 1845–1853. [Google Scholar] [CrossRef]
- Yuan, P.; Tan, H.; Wang, R.; Wang, T.; Wang, X. Very fast hot carrier diffusion in unconstrained MoS2 on a glass substrate: Discovered by picosecond ET-Raman. RSC Adv. 2018, 8, 12767–12778. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Wang, R.; Tan, H.; Wang, T.; Wang, X. Energy Transport State Resolved Raman for Probing Interface Energy Transport and Hot Carrier Diffusion in Few-Layered MoS2. ACS Photonics 2017, 4, 3115–3129. [Google Scholar] [CrossRef]
- Cole, K.D.; McGahan, W.A. Theory of Multilayers Heated by Laser Absorption. J. Heat Trans. 1993, 115, 767–771. [Google Scholar] [CrossRef]
- Machlab, H.; McGahan, W.A.; Woollam, J.A.; Cole, K. Thermal characterization of thin films by photothermally induced laser beam deflection. Thin Solid Films. 1993, 224, 22–27. [Google Scholar] [CrossRef]
- Koh, Y.K.; Bae, M.-H.; Cahill, D.G.; Pop, E. Heat conduction across monolayer and few layer graphenes. Nano Lett. 2010, 10, 4363–4368. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Han, M.; Wang, R.; Yuan, P.; Xu, S.; Wang, X. Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy. J. Appl. Phys. 2018, 123, 145104. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zobeiri, H.; Lin, H.; Qu, W.; Bai, X.; Deng, C.; Wang, X. Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers. Carbon 2019, 147, 58–69. [Google Scholar] [CrossRef]
- Li, C.; Xu, S.; Yue, Y.; Yang, B.; Wang, X. Thermal characterization of carbon nanotube fiber by time-domain differential Raman. Carbon 2016, 103, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xu, S.; Hurley, D.H.; Yue, Y.; Wang, X. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement. Opt. Lett. 2016, 41, 80–83. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, J.; Wang, R.; Wang, X. The hot carrier diffusion coefficient of sub-10 nm virgin MoS2: Uncovered by non-contact optical probing. Nanoscale 2017, 9, 6808–6820. [Google Scholar] [CrossRef]
- Wang, R.; Wang, T.; Zobeiri, H.; Yuan, P.; Deng, C.; Yue, Y.; Xu, S.; Wang, X. Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation. Nanoscale 2018, 10, 23087–23102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xu, S.; Liu, J. Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials. Nanomaterials 2022, 12, 1884. https://doi.org/10.3390/nano12111884
Zhou J, Xu S, Liu J. Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials. Nanomaterials. 2022; 12(11):1884. https://doi.org/10.3390/nano12111884
Chicago/Turabian StyleZhou, Jianjun, Shen Xu, and Jing Liu. 2022. "Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials" Nanomaterials 12, no. 11: 1884. https://doi.org/10.3390/nano12111884
APA StyleZhou, J., Xu, S., & Liu, J. (2022). Review of Photothermal Technique for Thermal Measurement of Micro-/Nanomaterials. Nanomaterials, 12(11), 1884. https://doi.org/10.3390/nano12111884