Strain-Modulated Magnetism in MoS2
Abstract
:1. Introduction
2. Progress in Theoretical Calculations of Strain-Mediated Magnetism
2.1. Nanoribbons
2.2. Hydrogenated or Nitrogen-Doped Systems
2.3. Defective Strained Systems
2.4. 3d Transition Metal (TM) Ion-Doped Systems
3. Experimental Progress of Strain-Mediated Magnetism
3.1. Methods of Appling Strain
3.2. Spontaneous Formation of Web Buckles
3.3. Web Buckle-Mediated RTFM
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Yazyev, O.V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 2010, 73, 056501. [Google Scholar] [CrossRef]
- Huang, B.; Yu, J.; Wei, S.H. Strain control of magnetism in graphene decorated by transition-metal atoms. Phys. Rev. B 2011, 84, 075415. [Google Scholar] [CrossRef] [Green Version]
- Kou, L.; Tang, C.; Guo, W.; Chen, C. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012–1017. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Yu, L.; Huang, B. Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene. Nanoscale 2011, 3, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.J.G.; Ayuela, A.; Sanchez-Portal, D. Strain-tunable spin moment in Ni-doped graphene. J. Phys. Chem. C 2012, 116, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.J.G.; Ayuela, A.; Fagan, S.B.; Mendes Filho, J.; Azevedo, D.L.; Souza Filho, A.G.; Sánchez-Portal, D. Switching on magnetism in Ni-doped graphene: Density functional calculations. Phys. Rev. B 2008, 78, 195420. [Google Scholar] [CrossRef] [Green Version]
- Boukhvalov, D.W.; Katsnelson, M.I. sp-electron magnetic clusters with a large spin in graphene. ACS Nano 2011, 5, 2440–2446. [Google Scholar] [CrossRef] [Green Version]
- Swain, A.K.; Bahadur, D. Deconvolution of mixed magnetism in multilayer graphene. Appl. Phys. Lett. 2014, 104, 242413. [Google Scholar] [CrossRef]
- Magda, G.Z.; Jin, X.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L.P.; Tapasztó, L. Room -temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sanz, S.; Corso, M.; Choi, D.J.; Peña, D.; Frederiksen, T.; Pascual, J.I. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M.A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G.; et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657. [Google Scholar] [CrossRef]
- Liu, X.; Hao, Z.; Khalaf, E.; Lee, J.Y.; Ronen, Y.; Yoo, H.; Haei Najafabadi, D.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Holleis, L.; Saito, Y.; Cohen, L.; Huynh, W.; Patterson Caitlin, L.; Yang, F.; Taniguchi, T.; Watanabe, K.; Young, A.F. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 2022, 375, 774–778. [Google Scholar] [CrossRef]
- Chen, G.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.-H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744. [Google Scholar] [CrossRef] [PubMed]
- Jaglicic, Z.; Jeromen, A.; Trontelj, Z.; Mihailovic, D.; Arcon, D.; Remskar, M.; Mrzel, A.; Dominko, R.; Gaberscek, M.; Martinez-Agudo, J.M.; et al. Magnetic properties of MoS2 nanotubes doped with lithium. Polyhedron 2003, 22, 2293–2295. [Google Scholar] [CrossRef]
- Mihailovic, D.; Jaglicic, Z.; Arcon, D.; Mrzel, A.; Zorko, A.; Remskar, M.; Kabanov, V.V.; Dominko, R.; Gaberscek, M.; Gómez-García, C.J.; et al. Unusual magnetic state in Lithium-doped MoS2 nanotubes. Phys. Rev. Lett. 2003, 90, 146401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojvodic, A.; Hinnemann, B.; Nørskov, J.K. Magnetic edge states in MoS2 characterized using density-functional theory. Phys. Rev. B 2009, 80, 125416. [Google Scholar] [CrossRef] [Green Version]
- Shidpour, R.; Manteghian, M. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2010, 2, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Shi, S.; Tao, K.; Xia, B.; Xue, D. Tunable ferromagnetic ordering in MoS2 nanosheets with fluorine adsorption. Nanoscale 2015, 7, 4211–4216. [Google Scholar] [CrossRef] [PubMed]
- Chacko, L.; Swetha, A.K.; Anjana, R.; Jayaraj, M.K.; Aneesh, P.M. Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes. Mater. Res. Express. 2016, 3, 116102. [Google Scholar] [CrossRef]
- Gao, G.H.; Chen, C.; Xie, X.B.; Su, Y.T.; Kang, S.D.; Zhu, G.C.; Gao, D.Y.; Trampert, A.; Cai, L.T. Toward edges-rich MoS2 layers via chemical liquid exfoliation triggering distinctive magnetism. Mater. Res. Lett. 2017, 5, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Kondo, G.; Yokoyama, N.; Yamada, S.; Hashimoto, Y.; Ohata, C.; Katsumoto, S.; Haruyama, J. Edge-spin-derived magnetism in few-layer MoS2 nanomeshes. AIP Adv. 2017, 7, 125019. [Google Scholar] [CrossRef]
- Zhengong, M.; Cheuk-Lam, H.; Guijun, L.; Sheung-Mei, N.; Hon-Fai, W.; Chi-Wah, L.; Wai-Yeung, W. Edge decoration of MoS2 monolayer with ferromagnetic CoFe nanoparticles. Mater. Res. Express. 2018, 5, 115010. [Google Scholar]
- Zhou, Q.; Su, S.; Cheng, P.; Hu, X.; Zeng, M.; Gao, X.; Zhang, Z.; Liu, J.-M. Robust ferromagnetism in zigzag-edge rich MoS2 pyramids. Nanoscale 2018, 10, 11578–11584. [Google Scholar] [CrossRef]
- Kaur, N.; Mir, R.A.; Pandey, O.P. A novel study on soft ferromagnetic nature of nano molybdenum sulphide (MoS2). Physica B 2019, 574, 411684. [Google Scholar] [CrossRef]
- Sarma, S.; Ghosh, B.; Ray, S.C.; Wang, H.T.; Mahule, T.S.; Pong, W.F. Electronic structure and magnetic behaviors of exfoliated MoS2 nanosheets. J. Phys. Condens. Matter 2019, 31, 135501. [Google Scholar] [CrossRef]
- Sanikop, R.; Sudakar, C. Tailoring magnetically active defect sites in MoS2 nanosheets for spintronics applications. ACS Appl. Nano Mater. 2020, 3, 576. [Google Scholar] [CrossRef]
- Sun, B.; Li, Q.L.; Chen, P. Room-temperature ferromagnetism of single-crystalline MoS2 nanowires. IET Micro Nano Lett. 2014, 9, 468–470. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Qi, J.; Gao, D. Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Res. Lett. 2014, 9, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; He, J.F.; Liu, Q.H.; Yao, T.; Chen, L.; Yan, W.S.; Hu, F.C.; Jiang, Y.; Zhao, Y.D.; Hu, T.D.; et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627. [Google Scholar] [CrossRef]
- Martinez, L.M.; Delgado, J.A.; Saiz, C.L.; Cosio, A.; Wu, Y.; Villagrán, D.; Gandha, K.; Karthik, C.; Nlebedim, I.C.; Singamaneni, S.R. Magnetic and electrocatalytic properties of transition metal doped MoS2 nanocrystals. J. Appl. Phys. 2018, 124, 153903. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.P.; Yang, C.Y.; Lee, C.J.; Lu, L.S.; Liang, H.L.; Lin, J.X.; Yu, Y.H.; Chen, C.C.; Chung, T.K.; Kaun, C.C.; et al. Room-temperature ferromagnetism of single-layer MoS2 induced by antiferromagnetic proximity of yttrium iron garnet. Adv. Quantum Technol. 2021, 4, 2000104. [Google Scholar] [CrossRef]
- Gao, D.; Si, M.; Li, J.; Zhang, J.; Zhang, Z.; Yang, Z.; Xue, D. Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 2013, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.M.; Qiao, W.; He, X.M.; Guo, X.B.; Xi, L.; Zhong, W.; Du, Y.W. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 2015, 106, 012408. [Google Scholar] [CrossRef]
- Park, C.-S.; Chu, D.; Shon, Y.; Lee, J.; Kim, E.K. Room temperature ferromagnetic and ambipolar behaviors of MoS2 doped by manganese oxide using an electrochemical method. Appl. Phys. Lett. 2017, 110, 222104. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, D.; Zhang, J.; Xu, Q.; Shi, S.; Tao, K.; Xue, D. Realization of high curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology. Nanoscale 2015, 7, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pawar, S.; Sharma, S.; Kaur, D. Bipolar resistive switching behavior in MoS2 nanosheets fabricated on ferromagnetic shape memory alloy. Appl. Phys. Lett. 2018, 112, 262106. [Google Scholar] [CrossRef]
- Xia, B.R.; Liu, P.T.; Liu, Y.G.; Gao, D.Q.; Xue, D.S.; Ding, J. Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Appl. Phys. Lett. 2018, 113, 013101. [Google Scholar] [CrossRef]
- Shirokura, T.; Muneta, I.; Kakushima, K.; Tsutsui, K.; Wakabayashi, H. Strong edge-induced ferromagnetism in sputtered MoS2 film treated by post-annealing. Appl. Phys. Lett. 2019, 115, 192404. [Google Scholar] [CrossRef]
- Duan, H.; Li, G.; Tan, H.; Wang, C.; Li, Q.; Liu, C.; Yin, Y.; Li, X.; Qi, Z.; Yan, W. Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer. Nano Res. 2022, 15, 881–888. [Google Scholar] [CrossRef]
- Mathew, S.; Gopinadhan, K.; Chan, T.K.; Yu, X.J.; Zhan, D.; Cao, L.; Rusydi, A.; Breese, M.B.H.; Dhar, S.; Shen, Z.X.; et al. Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 2012, 101, 102103. [Google Scholar] [CrossRef] [Green Version]
- Tongay, S.; Varnoosfaderani, S.S.; Appleton, B.R.; Wu, J.; Hebard, A.F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105. [Google Scholar] [CrossRef]
- Han, S.W.; Hwang, Y.H.; Kim, S.H.; Yun, W.S.; Lee, J.D.; Park, M.G.; Ryu, S.; Park, J.S.; Yoo, D.H.; Yoon, S.P.; et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys. Rev. Lett. 2013, 110, 247201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tseng, L.-T.; Murmu, P.P.; Bao, N.; Kennedy, J.; Ionesc, M.; Ding, J.; Suzuki, K.; Li, S.; Yi, J. Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater. Des. 2017, 121, 77–84. [Google Scholar] [CrossRef]
- Kou, L.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C.; Frauenheim, T. Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. J. Phys. Chem. Lett. 2012, 3, 2934–2941. [Google Scholar] [CrossRef]
- Lu, P.; Wu, X.J.; Guo, W.L.; Zeng, X.C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040. [Google Scholar] [CrossRef]
- Ma, Y.D.; Dai, Y.; Guo, M.; Niu, C.W.; Zhu, Y.T.; Huang, B.B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, Y.W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 2012, 116, 11752–11757. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Wang, Z.G.; Yang, P.; Zu, X.T.; Yang, L.; Sun, X.; Gao, F. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 2012, 6, 9727–9736. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Pan, H.; Zhang, Y.-W.; Yakobson, B.I. Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys. Rev. B 2013, 88, 205305. [Google Scholar] [CrossRef]
- Guo, H.; Lu, N.; Wang, L.; Wu, X.; Zeng, X.C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J. Phys. Chem. C 2014, 118, 7242–7249. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.S.; Li, X.; Chen, X.F.; Hu, K.G. Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys. Condens. Matter 2014, 26, 256003. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Guo, W. Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers. Nanoscale 2014, 6, 12929–12933. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.L.; Yang, B.S.; Wang, D.D.; Han, R.L.; Du, X.B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403. [Google Scholar] [CrossRef]
- Chen, Z.P.; He, J.J.; Zhou, P.; Na, J.; Sun, L.Z. Strain control of the electronic structures, magnetic states, and magnetic anisotropy of Fe doped single-layer MoS2. Comp. Mater. Sci. 2015, 110, 102–108. [Google Scholar] [CrossRef]
- Manchanda, P.; Sharma, V.; Yu, H.B.; Sellmyer, D.J.; Skomski, R. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation. Appl. Phys. Lett. 2015, 107, 032402. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.S.; Lee, J.D. Strain-induced magnetism in single-layer MoS2: Origin and manipulation. J. Phys. Chem. C 2015, 119, 2822–2827. [Google Scholar] [CrossRef]
- Zheng, H.L.; Yang, B.S.; Wang, H.X.; Chen, Z.Y.; Yan, Y. Strain induced modulation to the magnetism of antisite defects doped monolayer MoS2. J. Magn. Magn. Mater. 2015, 386, 155–160. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, X.; Wang, T.X.; Dai, X.Q.; Xia, C.X. Electronic and magnetic properties of Ag-doped monolayer WS2 by stain. J. Alloy. Compd. 2016, 680, 659–664. [Google Scholar] [CrossRef]
- Sahoo, M.P.K.; Wang, J.; Zhang, Y.J.; Shimada, T.; Kitamura, T. Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J. Phys. Chem. C 2016, 120, 14113–14121. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.L.; Zhang, H. Effect of strain on the magnetic states of transition-metal atoms doped monolayer WS2. Comp. Mater. Sci. 2016, 117, 354–360. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, H.T.; Jiang, J.; Tao, Q.C.; Song, X.J.; Li, H.; Huang, J. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: Interplay between strain and vacancy. J. Appl. Phys. 2016, 120, 013904. [Google Scholar] [CrossRef]
- Luo, M.; Shen, Y.H. Effect of strain on magnetic coupling in Ga-doped WS2 monolayer: Ab initio study. J. Supercond. Nov. Magn. 2018, 31, 1801–1805. [Google Scholar] [CrossRef]
- Xu, W.; Yan, S.M.; Qiao, W. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Adv. 2018, 8, 8435–8441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Liang, X.; Qin, J.; Deng, L.; Bi, L. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study. AIP Adv. 2018, 8, 055917. [Google Scholar] [CrossRef]
- Cortés, N.; Ávalos-Ovando, O.; Rosales, L.; Orellana, P.A.; Ulloa, S.E. Tunable Spin-Polarized Edge Currents in Proximitized Transition Metal Dichalcogenides. Phys. Rev. Lett. 2019, 122, 086401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.; Li, Z. Strain effect on the magnetism of N-doped molybdenum disulfide. Phys. Status Solidi B 2019, 256, 1900110. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.; Jiang, C. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420. [Google Scholar] [CrossRef]
- Ren, H.T.; Zhang, L.; Xiang, G. Web buckle-mediated room-temperature ferromagnetism in strained MoS2 thin films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiong, Z.X.; Wang, E.Z.; Yuan, Z.Q.; Sun, Y.F.; Zhu, K.L.; Wang, B.L.; Wang, X.W.; Ding, H.Y.; Liu, P.; et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films. ACS Nano 2019, 13, 3106–3116. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G.; Lu, J.T.; Zhang, X.; Zhang, L. Biaxial strain-mediated room temperature ferromagnetism of ReS2 web buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
- Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941. [Google Scholar] [CrossRef] [Green Version]
- Dolui, K.; Das Pemmaraju, C.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Zhang, Y.W. Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J. Mater. Chem. 2012, 22, 7280–7290. [Google Scholar] [CrossRef]
- Wen, Y.N.; Gao, P.F.; Chen, X.; Xia, M.G.; Zhang, Y.; Zhang, S.L. Width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons. Mod. Phys. Lett. B 2017, 31, 1750017. [Google Scholar] [CrossRef]
- Chen, K.Y.; Deng, J.K.; Ding, X.D.; Sun, J.; Yang, S.; Liu, J.Z. Ferromagnetism of 1T ‘-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 2018, 140, 16206–16212. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Ren, H.T.; Gao, P.F.; Zhang, Y.; Xia, M.G.; Zhang, S.L. Flexible modulation of electronic and magnetic properties of zigzag H-MoS2 nanoribbons by crack defects. J. Phys. Condens. Matter 2018, 30, 285302. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Pang, Y.; Liu, D.Y.; Zheng, S.H.; Song, Q.L. Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons. Comp. Mater. Sci. 2018, 146, 240–247. [Google Scholar] [CrossRef]
- Vancso, P.; Hagymasi, I.; Castenetto, P.; Lambin, P. Stability of edge magnetism against disorder in zigzag MoS2 nanoribbons. Phys. Rev. Mater. 2019, 3, 094003. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.Y.; Hu, C.; Luo, X.F.; Hong, A.J.; Yu, T.; Yuan, C.L. Ferromagnetic behaviors in monolayer MoS2 introduced by nitrogen-doping. Appl. Phys. Lett. 2020, 116, 073102. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlogl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401. [Google Scholar] [CrossRef] [Green Version]
- Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.L.; Shi, G.; Lei, S.D.; Yakobson, B.I.; Idrobo, J.C.; Ajayan, P.M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, P.; Zu, H.; Gao, F.; Zu, X. Electronic structures and magnetic properties of MoS2 nanostructures: Atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 2013, 15, 10385–10394. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.G.; Su, Q.L.; Wang, Z.G.; Deng, H.Q.; Zu, X.T. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Phys. Chem. Chem. Phys. 2013, 15, 18464–18470. [Google Scholar] [CrossRef]
- Najmaei, S.; Yuan, J.T.; Zhang, J.; Ajayan, P.; Lou, J. Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 2015, 48, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fan, L.; Yang, Y.; Xiao, P. Strain engineering the magnetic states of vacancy-doped monolayer MoSe2. J. Alloy. Compd. 2015, 635, 307–313. [Google Scholar] [CrossRef]
- Li, A.; Pan, J.; Yang, Z.; Zhou, L.; Xiong, X.; Ouyang, F. Charge and strain induced magnetism in monolayer MoS2 with S vacancy. J. Magn. Magn. Mater. 2018, 451, 520–525. [Google Scholar] [CrossRef]
- Yang, H.P.; Ouyang, W.G.; Yan, X.X.; Li, Z.C.; Yu, R.; Yuan, W.J.; Luo, J.; Zhu, J. Bilayer MoS2 quantum dots with tunable magnetism and spin. AIP Adv. 2018, 8, 115103. [Google Scholar] [CrossRef] [Green Version]
- Bouarissa, A.; Layadi, A.; Maghraoui-Meherzi, H. Experimental study of the diamagnetism and the ferromagnetism in MoS2 thin films. Appl. Phys. A 2020, 126, 93. [Google Scholar] [CrossRef]
- Tao, P.; Guo, H.; Yang, T.; Zhang, Z. Strain-induced magnetism in MoS2 monolayer with defects. J. Appl. Phys. 2014, 115, 054305. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Fu, S.C.; Shayan, K.; Anthony, Y.; Dadras, S.; Yuzan, X.; Kazunori, F.; Terrones, M.; Zhang, W.; Stefan, S.; et al. The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. Nanotechnology 2021, 32, 095708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Jin, C.H.; Wu, J.L.; Ji, W. Magnetism in molybdenum disulphide monolayer with sulfur substituted by 3d transition metals. J. Appl. Phys. 2016, 120, 144305. [Google Scholar] [CrossRef]
- Li, H.X.; Huang, M.; Cao, G.Y. Magnetic properties of atomic 3d transition-metal chains on S-vacancy-line templates of monolayer MoS2: Effects of substrate and strain. J. Mater. Chem. C 2017, 5, 4557–4564. [Google Scholar] [CrossRef]
- Miao, Y.P.; Huang, Y.H.; Bao, H.W.; Xu, K.W.; Ma, F.; Chu, P.K. Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain. J. Phys. Condens. Matter 2018, 30, 215801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.F.; Li, Z.Q.; Li, J.; Hao, G.L.; He, C.Y.; Ouyang, T.; Zhang, C.X.; Tang, C.; Zhong, J.X. Strain effects on magnetic states of monolayer MoS2 doped with group IIIA to VA atoms. Physica E 2019, 114, 113609. [Google Scholar] [CrossRef]
- Miao, Y.P.; Bao, H.W.; Fan, W.; Ma, F. Modulation of the electronic structure and magnetism performance of V-doped monolayer MoS2 by strain engineering. J. Phys. Chem. Solids 2020, 142, 109459. [Google Scholar] [CrossRef]
- Yue, Y.L.; Jiang, C.; Han, Y.L.; Wang, M.; Ren, J.; Wu, Y.K. Magnetic anisotropies of Mn-, Fe-, and Co-doped monolayer MoS2. J. Magn. Magn. Mater. 2020, 496, 165929. [Google Scholar] [CrossRef]
- Gao, B.; Huang, C.; Zhu, F.; Ma, C.L.; Zhu, Y. Magnetic properties of Mn-doped monolayer MoS2. Phys. Lett. A 2021, 414, 127636. [Google Scholar] [CrossRef]
- Han, X.P.; Benkraouda, M.; Amrane, N. S vacancy enhanced ferromagnetism in Mn-doped monolayer MoS2: A hybrid functional study. Chem. Phys. 2021, 541, 111043. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldan, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H.S.J.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef] [Green Version]
- Iguiniz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the Young’s modulus of 2D materials. Adv. Mater. 2019, 31, 1807150. [Google Scholar] [CrossRef] [Green Version]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, C.; Young, R.J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K.S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jang, W.S.; Han, S.W.; Baik, H.K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 2014, 30, 9866–9873. [Google Scholar] [CrossRef]
- Pak, S.; Lee, J.; Lee, Y.W.; Jang, A.R.; Ahn, S.; Ma, K.Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H.Y.; et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef] [Green Version]
- John, A.P.; Thenapparambil, A.; Thalakulam, M. Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology 2020, 31, 275703. [Google Scholar] [CrossRef] [Green Version]
- Thai, K.Y.; Park, I.; Kim, B.J.; Hoang, A.T.; Na, Y.; Park, C.U.; Chae, Y.; Ahn, J.-H. MoS2/Graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X.; Zhou, W.; Yu, T.; Qiu, C.; Birdwell, A.G.; Crowne, F.J.; et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.J.; Nguyen, J.; Yu, E.T.; Lu, N.S. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces 2015, 2, 1500176. [Google Scholar] [CrossRef]
- Amani, M.; Chin, M.L.; Mazzoni, A.L.; Burke, R.A.; Najmaei, S.; Ajayan, P.M.; Lou, J.; Dubey, M. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, M.-Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L.-J.; Muller, D.A.; Shih, C.-K. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158. [Google Scholar] [CrossRef]
- Chae, W.H.; Cain, J.D.; Hanson, E.D.; Murthy, A.A.; Dravid, V.P. Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 2017, 111, 143106. [Google Scholar] [CrossRef]
- Luo, S.W.; Cullen, C.P.; Guo, G.C.; Zhong, J.X.; Duesberg, G.S. Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition. Appl. Surf. Sci. 2020, 508, 145127. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Jung, G.S.; Liu, C.; Lin, Y.-C.; Rouleau, C.M.; Yoon, M.; Eres, G.; Duscher, G.; Xiao, K.; Irle, S.; et al. Strain-induced growth of twisted bilayers during the coalescence of monolayer MoS2 crystals. ACS Nano 2021, 15, 4504–4517. [Google Scholar] [CrossRef]
- Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Han, M.; Wang, Q.; Ji, Y.; Zhang, X.; Shi, R.; Wu, Z.; Zhang, L.; Amini, A.; Guo, L.; et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644. [Google Scholar] [CrossRef]
- Taghinejad, H.; Eftekhar, A.A.; Campbell, P.M.; Beatty, B.; Taghinejad, M.; Zhou, Y.; Perini, C.J.; Moradinejad, H.; Henderson, W.E.; Woods, E.V.; et al. Strain relaxation via formation of cracks in compositionally modulated two-dimensional semiconductor alloys. NPJ 2D Mater. Appl. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.S.; Huang, T.X.; Xu, X.; Bao, Y.F.; Pei, X.D.; Yao, X.; Cao, M.F.; Lin, K.Q.; Wang, X.; Wang, D.; et al. Quantitatively deciphering electronic properties of defects at atomically thin transition-metal dichalcogenides. ACS Nano 2022, 16, 4786–4794. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Che, S.; Debbarma, R.; Berry, V. Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale 2019, 11, 504–511. [Google Scholar] [CrossRef]
- Zhang, Y.; Choi, M.-K.; Haugstad, G.; Tadmor, E.B.; Flannigan, D.J. Holey substrate-directed strain patterning in bilayer MoS2. ACS Nano 2021, 15, 20253–20260. [Google Scholar] [CrossRef] [PubMed]
- Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; de Mongeot, F.B.; Molle, A. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785. [Google Scholar] [CrossRef]
- Li, H.; Contryman, A.W.; Qian, X.; Ardakani, S.M.; Gong, Y.; Wang, X.; Weisse, J.M.; Lee, C.H.; Zhao, J.; Ajayan, P.M.; et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381. [Google Scholar] [CrossRef]
- Li, H.; Du, M.; Mleczko, M.J.; Koh, A.L.; Nishi, Y.; Pop, E.; Bard, A.J.; Zheng, X.L. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 5123–5129. [Google Scholar] [CrossRef]
- Wang, S.W.; Medina, H.; Hong, K.B.; Wu, C.C.; Qu, Y.D.; Manikandan, A.; Su, T.Y.; Lee, P.T.; Huang, Z.Q.; Wang, Z.M.; et al. Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light matter interaction toward excellent photodetectors. ACS Nano 2017, 11, 8768–8776. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liao, Q.; Zhang, X.; Du, J.; Ou, Y.; Xiao, J.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066. [Google Scholar] [CrossRef]
- Yang, R.; Lee, J.; Ghosh, S.; Tang, H.; Sankaran, R.M.; Zorman, C.A.; Feng, P.X.L. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 2017, 17, 4568–4575. [Google Scholar] [CrossRef]
- Tyurnina, A.V.; Bandurin, D.A.; Khestanova, E.; Kravets, V.G.; Koperski, M.; Guinea, F.; Grigorenko, A.N.; Geim, A.K.; Grigorieva, I.V. Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 2019, 6, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.; Liu, X.; Christopher, J.W.; Cantley, L.; Wadehra, A.; Kim, B.L.; Goldberg, B.B.; Swan, A.K.; Bunch, J.S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 19, 5836–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzeli, S.; Allain, A.; Ghadimi, A.; Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 2015, 15, 5330–5335. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.J.; Lan, Y.W.; Stieg, A.Z.; Chen, J.H.; Zhong, Y.L.; Li, L.J.; Chen, C.D.; Zhang, Y.; Wang, K.L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, Y.Y.; Liu, X.; Jie, W.; Chan, N.Y.; Hao, J.; Hsu, Y.-T.; Li, L.-J.; Guo, W.; Lau, S.P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 Sheet. ACS Nano 2013, 7, 7126–7131. [Google Scholar] [CrossRef] [PubMed]
- Botello-Méndez, A.R.; López-Urías, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 2008, 8, 1562–1565. [Google Scholar] [CrossRef]
- Ren, H.; Xiang, G. Morphology-dependent room-temperature ferromagnetism in undoped ZnO nanostructures. Nanomaterials 2021, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, H.; Shi, Y.; Li, J. Terahertz driven reversible topological phase transition of monolayer transition metal dichalcogenides. Adv. Sci. 2021, 8, 2003832. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586–24591. [Google Scholar] [CrossRef] [Green Version]
- Fuh, H.-R.; Yan, B.; Wu, S.-C.; Felser, C.; Chang, C.-R. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys. 2016, 18, 113038. [Google Scholar] [CrossRef]
- Popov, Z.I.; Mikhaleva, N.S.; Visotin, M.A.; Kuzubov, A.A.; Entani, S.; Naramoto, H.; Sakai, S.; Sorokin, P.B.; Avramov, P.V. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures. Phys. Chem. Chem. Phys. 2016, 18, 33047–33052. [Google Scholar] [CrossRef]
- Yu, W.; Li, J.; Herng, T.S.; Wang, Z.S.; Zhao, X.X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.D.; et al. Chemically exfoliated VSe monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, L.; Wong, P.K.J.; Yuan, J.R.; Vinai, G.; Torelli, P.; Laan, G.V.D.; Feng, Y.F.; Wee, A.T.S. Magnetic transition in Monolayer VSe interface hybridization. ACS Nano 2019, 13, 8997–9004. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 2011, 115, 13303–13311. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.H.; Hu, Z.X.; Probert, M.; Li, K.; Lv, D.H.; Yang, X.N.; Gu, L.; Mao, N.N.; Feng, Q.L.; Xie, L.M.; et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.H.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Deng, L.; Shi, Z.; Liu, S.; Wei, Q.; Zhang, L.; Cheng, Y.; Zhang, L.; Lu, H.; et al. Enhanced valley zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636–4645. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Hu, W.; Wang, C.; Ma, C.; Duan, H.; Yan, W.; Cai, L.; Guo, P.; Sun, Z.; Liu, Q.; et al. Intrinsic ferromagnetism in Mn-substituted MoS2 nanosheets achieved by supercritical hydrothermal reaction. Small 2017, 13, 1701389. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.J.; Kim, Y.S.; Kim, Y.H.; Kim, J.C.; Huh, W.; Lee, J.; Park, S.; Jeong, H.Y.; Kim, Y.D.; et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 2021, 4, 664–670. [Google Scholar] [CrossRef]
- Chen, Y.H.; Tamming, R.R.; Chen, K.; Zhang, Z.; Liu, F.; Zhang, Y.; Hodgkiss, J.M.; Blaikie, R.J.; Ding, B.; Qiu, M. Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat. Commun. 2021, 12, 4332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, H.; Wang, P.; Zhou, X.; Liu, C.; Zhang, Q.; Wang, F.; Huang, M.; Chen, S.; Wu, P.; et al. Controllable doping in 2D layered materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, L.; Yu, H.; Liao, Q.; Kang, Z.; Zhang, Z.; Zhang, Y. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides. Acc. Mater. Res. 2021, 2, 655–668. [Google Scholar] [CrossRef]
- Lee, S.J.; Lin, Z.Y.; Duan, X.F.; Huang, Y. Doping on demand in 2D devices. Nat. Electron. 2020, 3, 77–78. [Google Scholar] [CrossRef]
- Nethravathi, C.; Prabhu, J.; Lakshmipriya, S.; Rajamathi, M. Magnetic Co-doped MoS2 nanosheets for efficient catalysis of nitroarene reduction. ACS Omega 2017, 2, 5891–5897. [Google Scholar] [CrossRef]
- Shi, X.Y.; Posysaev, S.; Huttula, M.; Pankratov, V.; Hoszowska, J.; Dousse, J.-C.; Zeeshan, F.; Niu, Y.R.; Zakharov, A.; Li, T.H.; et al. Metallic contact between MoS2 and Ni via Au Nanoglue. Small 2018, 14, 1704526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, H.B.; Luo, P.F.; Liang, P.; Cao, D.; Chen, X.S. Layer-dependent dopant stability and magnetic exchange coupling of Iron-doped MoS2 nanosheets. ACS Appl. Mater. Inter. 2015, 7, 7534–7541. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Zhang, Z.; Xu, X.; Zhang, Q.; Wang, Q.; Yuan, C. Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys. Chem. Chem. Phys. 2015, 17, 15822–15828. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhai, C.; Lu, Q.; Zhang, M. Effect of Ho dopant on the ferromagnetic characteristics of MoS2 nanocrystals. Phys. Chem. Chem. Phys. 2019, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 092401. [Google Scholar] [CrossRef]
- Xia, B.; Guo, Q.; Gao, D.; Shi, S.; Tao, K. High temperature ferromagnetism in Cu-doped MoS2 nanosheets. J. Phys. D Appl. Phys. 2016, 49, 165003. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, W.-K.; Tu, R.; Rhee, D.; Zhao, R.; Wang, X.; Liu, X.; Hu, X.; Zhang, X.; Odom, T.W.; et al. Spontaneous formation of ordered magnetic domains by patterning stress. Nano Lett. 2021, 21, 5430–5437. [Google Scholar] [CrossRef] [PubMed]
- Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Deng, S.K.; Gao, E.L.; Xu, Z.P.; Berry, V. Adhesion energy of MoS2 thin films on silicon-based substrates determined via the attributes of a single MoS2 wrinkle. ACS Appl. Mater. Inter. 2017, 9, 7812–7818. [Google Scholar] [CrossRef]
- Santos, E.J.G.; Riikonen, S.; Sánchez-Portal, D.; Ayuela, A. Magnetism of single vacancies in rippled graphene. J. Phys. Chem. C 2012, 116, 7602–7606. [Google Scholar] [CrossRef]
- Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
- He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.R.; Wang, G.; Liu, B.L.; Marie, X.; Qiao, X.F.; Zhang, X.; Wu, X.X.; Fan, H.; Tan, P.H.; Amand, T.; et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301. [Google Scholar] [CrossRef] [Green Version]
- Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. Strain mapping in single-layer two-dimensional crystals via Raman activity. Phys. Rev. B 2018, 97, 115427. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; Shan, J.; Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661. [Google Scholar] [CrossRef]
- Li, H.; Qi, X.; Wu, J.; Zeng, Z.; Wei, J.; Zhang, H. Investigation of MoS2 and graphene nanosheets by magnetic force microscopy. ACS Nano 2013, 7, 2842–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.-S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Schmid, I.; Marioni, M.A.; Kappenberger, P.; Romer, S.; Parlinska-Wojtan, M.; Hug, H.J.; Hellwig, O.; Carey, M.J.; Fullerton, E.E. Exchange bias and domain evolution at 10 nm scales. Phys. Rev. Lett. 2010, 105, 197201. [Google Scholar] [CrossRef]
- Moser, A.; Xiao, M.; Kappenberger, P.; Takano, K.; Weresin, W.; Ikeda, Y.; Do, H.; Hug, H.J. High-resolution magnetic force microscopy study of high-density transitions in perpendicular recording media. J. Magn. Magn. Mater. 2005, 287, 298–302. [Google Scholar] [CrossRef]
- Mattiat, H.; Rossi, N.; Gross, B.; Pablo-Navarro, J.; Magén, C.; Badea, R.; Berezovsky, J.; De Teresa, J.M.; Poggio, M. Nanowire magnetic force sensors fabricated by focused-electron-beam-induced deposition. Phys. Rev. Appl. 2020, 13, 044043. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, M.; Van Duzer, T.; Kirtley, J.R.; Ketchen, M.B. Magnetic imaging of moat-guarded superconducting electronic circuits. Appl. Phys. Lett. 1995, 67, 1769–1771. [Google Scholar] [CrossRef]
- Sheng, Z.; Feng, Q.; Zhou, H.; Dong, S.; Xu, X.; Cheng, L.; Liu, C.; Hou, Y.; Meng, W.; Sun, Y.; et al. Visualization of electronic multiple ordering and its dynamics in high magnetic field: Evidence of electronic multiple ordering crystals. ACS Appl. Mater. Inter. 2018, 10, 20136–20141. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Paulius, L.; Rosenberg, A.J.; Palmstrom, J.C.; Holland, C.M.; Spanton, E.M.; Schiessl, D.; Jermain, C.L.; Gibbons, J.; Fung, Y.K.K.; et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 2016, 87, 093702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 2013, 8, 639–644. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270. [Google Scholar] [CrossRef] [Green Version]
- Thiel, L.; Wang, Z.; Tschudin, M.A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A.F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.; Eichler, A.; Rhensius, J.; Lorenzelli, L.; Degen, C.L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 2017, 17, 2367–2373. [Google Scholar] [CrossRef] [Green Version]
- Wörnle, M.S.; Welter, P.; Giraldo, M.; Lottermoser, T.; Fiebig, M.; Gambardella, P.; Degen, C.L. Coexistence of Bloch and N’eel walls in a collinear antiferromagnet. Phys. Rev. B 2021, 103, 094426. [Google Scholar] [CrossRef]
- Ariyaratne, A.; Bluvstein, D.; Myers, B.A.; Jayich, A.C.B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 2018, 9, 2406. [Google Scholar] [CrossRef] [Green Version]
- Vool, U.; Hamo, A.; Varnavides, G.; Wang, Y.; Zhou, T.X.; Kumar, N.; Dovzhenko, Y.; Qiu, Z.; Garcia, C.A.C.; Pierce, A.T.; et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 2021, 17, 1216–1220. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Cai, X.; Shi, R.; Wang, W.; Li, T.; Wu, Z.; Zhang, X.; Peng, O.; Amini, A.; et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate. Chem. Mater. 2020, 32, 2508–2517. [Google Scholar] [CrossRef]
- Rasaili, P.; Sharma, N.K.; Bhattarai, A. Comparison of ferromagnetic materials: Past work, recent trends, and applications. Condens. Matter 2022, 7, 12. [Google Scholar] [CrossRef]
- Li, H.; Ruan, S.C.; Zeng, Y.J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Dong, B.J.; Sun, X.D.; Wang, H.W.; Yang, T.; Yu, G.Q.; Han, Z.V. Perspectives on exfoliated two-dimensional spintronics. J. Semi. 2019, 40, 081508. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wang, B.; Zhang, X.W.; Yuan, S.J.; Ma, L.; Wang, J.L. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zeng, C.; Zhong, J.H.; Ding, J.N.; Wang, Z.M.; Liu, Z.W. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.J.; Li, W.; Hou, Y.L. Two-dimensional magnetic nanostructures. Trends in Chem. 2020, 2, 163–173. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Q.X.; Xing, J.P.; Liu, N.S.; Guo, Y.; Liu, Z.F.; Zhao, J.J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021, 8, 031305. [Google Scholar] [CrossRef]
- Zhang, S.F.; Wu, H.; Yang, L.; Zhang, G.J.; Xie, Y.M.; Zhang, L.; Zhang, W.F.; Chang, H.X. Two-dimensional magnetic atomic crystals. Mater. Horiz. 2021, 9, 559–576. [Google Scholar] [CrossRef]
- Hossain, M.; Qin, B.; Li, B.; Duan, X.D. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today 2022, 42, 101338. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Liang, S.J.; Ma, Z.; Xu, K.; Liu, X.; Zhang, L.; Admasu, A.S.; Cheong, S.-W.; Wang, L.; et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Liang, S.J.; Cheng, B. Straintronics with van der Waals materials. NPJ Quantum Mater. 2021, 6, 59. [Google Scholar] [CrossRef]
- Yan, Y.L.; Ding, S.; Wu, X.N.; Zhu, J.; Feng, D.M.; Yang, X.D.; Li, F.F. Tuning the physical properties of ultrathin transition-metal dichalcogenides via strain engineering. RSC Adv. 2020, 10, 39455–39467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Y.; Liu, K.; Liu, Y.W.; Guo, Y.L.; Liu, Y.Q. Intrinsically flexible displays: Key materials and devices. Natl. Sci. Rev. 2022, nwac090. [Google Scholar] [CrossRef]
- Liu, R.Y.; Wang, Z.L.; Fukuda, K.; Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 2022, 1–17. [Google Scholar] [CrossRef]
System | Supercell Size | Maximum Strain | Magnetic Moment | Remarks |
---|---|---|---|---|
Pristine [94] | 4 × 4 | 11% | 0 µB | NM (0–11%), biaxial |
Pristine [60] | 4 × 4 | 20% | 5 µB (19%) | NM (0–20%), biaxial |
Pristine [60] | 20% | 0 µB | NM (0–20%), x-axis | |
Pristine [60] | 20% | 0 µB | NM (0–20%), y-axis | |
VMo [94] | 4 × 4 | 11% | >2 µB (7–11%) | NM (<7%), biaxial |
VMo [60] | 4 × 4 | 20% | 2.02 µB (14.5%) | NM (<6.5%), biaxial |
VMo [60] | 20% | 2.02 µB (7.5–20%) | NM (0–7.5%), x-axis | |
VMo [60] | 20% | 2.02 µB (7.5–20%) | NM (0–7.5%), y-axis | |
VS [57] | 6 × 6 | 10% | 2.0 µB (9%) | NM (<9%), biaxial |
VS [60] | 4 × 4 | 20% | 4.07 µB (14.5%) | NM (<8%), biaxial |
VS [60] | 20% | ~2.07 µB (20%) | NM (0–15%), x-axis | |
VS [60] | 20% | ~2.0 µB (15%) | NM (0–10%), y-axis | |
VS0 [91] | 4 × 4 | 16% | ~3 µB (12%) | NM (0–10%), biaxial |
VS1+ [91] | 4 × 4 | 16% | 2.0 µB (12%) | NM (0–6%), biaxial |
VS2+ [91] | 4 × 4 | 16% | 2.0 µB (12%) | NM (0%;6–8%), biaxial |
V2S [94] | 4 × 4 | 11% | >2 µB (>10%) | NM (<10%), biaxial |
V2S [57] | 6 × 6 | 10% | 5.5 µB (9%) | NM (<9%), biaxial |
V2S [60] | 4 × 4 | 22% | 7.45 µB (13.5%) | NM (<9.5%), biaxial |
V2S [60] | 20% | ~3.0 µB (20%) | NM (0–15%), x-axis | |
V2S [60] | 20% | ~1.0 µB (20%) | NM (0–15%), y-axis | |
VMoS [60] | 4 × 4 | 20% | 4.04 µB (13%) | NM (<5.5%), biaxial |
VMoS [60] | 20% | ~1.7 µB (10%); | NM (<10%, 15%), x-axis | |
VMoS [60] | 20% | 0 µB | NM (0–20%), y-axis | |
VMoS2 [60] | 4 × 4 | 20% | ~5.9 µB (20%) | ~2 µB (<5%), biaxial |
VMoS2 [60] | 20% | 0 µB | NM (>4%), x-axis | |
VMoS2 [60] | 20% | ~2 µB (0–20%) | y-axis | |
VMoS3 [57] | 6 × 6 | 10% | 4.0 µB (10%) | NM (<10%), biaxial |
VMoS6 [57] | 6 × 6 | −12% | 12.0 µB (9%) | NM (−12%), biaxial |
S2Mo [61] | 6 × 6 | 8% | 2.0 µB (8%) | NM (<8%), biaxial |
MoS2 [61] | 6 × 6 | 8% | 2.0 µB (8%) | NM (<8%), biaxial |
MoS [63] | 4 × 4 | 7% | 2.0 µB (−7–4%) | NM (5–7%), biaxial |
Dopant | Supercell Size | Maximum Strain | Magnetic Moment/µB | Remarks |
---|---|---|---|---|
V [88] | 5 × 5 | 20% | 0 µB (−20–20%) | |
V [100] | 4 × 4 | 5% | 0.81 µB (0%) | AFM (3% or −2%) |
Mn [88] | 5 × 5 | 20% | 1.0 µB (0%) | 0 (−20%); 2.8 µB (20%) |
Mn [55] | 4 × 4 | 6% | 1.0 (1%) | 3.0 µB (6%), biaxial |
Mn [98] | 4 × 4 | −10% | 1.0 (−10–9%) | be almost independent on the size of supercell, no matter under a tensile or compressive strain |
Mn [98] | 5 × 5 | −10% | 1.0 (−10–9%) | |
Mn [98] | 6 × 6 | −10% | 1.0 (−10–9%) | |
Mn [98] | Unit cell | 9% | 1.0 µB (0–3%) | 3.0 µB (4–9%), biaxial |
Fe [88] | 5 × 5 | 20% | 2.0 µB (0%) | 0 (−20%); 4.2 µB (20%) |
Fe [58] | 4 × 4 | 6% | 2.04 µB (0%) | 4.0 µB (3.5–6%), spin reorientation |
Fe [68] | Unit cell | 9% | 2.0 µB (0–5%) | 4.0 µB (6–9%), biaxial |
Co [88] | 5 × 5 | 20% | 5.0 µB (15%) | 0 (−20%); 3.3 µB (20%) |
Co [68] | Unit cell | 9% | 3.0 µB (0–7%) | 3.4 µB (8%), biaxial |
Ni [88] | 5 × 5 | 20% | 5.0 µB (10%) | 0 (−20%); 2.0 µB (20%) |
Ni [68] | Unit cell | 9% | 4.0 µB (0–8%) | 3.7 µB (9%), biaxial |
Cu [88] | 5 × 5 | 20% | 5.0 µB (0%) | 0 (−20%); 0 µB (20%) |
Zn [88] | 5 × 5 | 20% | 3.0 µB (10%) | 0 (−20%); 0 µB (20%) |
Cr [88] | 5 × 5 | 20% | 0 µB (−20–20%) | |
Ti [88] | 5 × 5 | 20% | 0 µB (−20–20%) | |
Sc [88] | 5 × 5 | 20% | 0 µB (−20–20%) |
Methods | Substrates | Layers | Ranges | Remarks |
---|---|---|---|---|
Pre-stretches substrate | Gel-film [104] | 3−5 L | 0.2–2.5% | Uniaxial tensile |
Pre-stretches substrate | PDMS [105] | 2–10 L | 20% (PDMS) | Uniaxial |
Flexible substrate | Polycarbonate [106] | 1−2 L | 0−2.2% | Uniaxial tensile |
Flexible substrate | Polymer [107] | 1, few | 0–0.8% | Uniaxial tensile |
Flexible substrate | Ag-coated PET [108] | 20–80 nm | 0–0.02% | Uniaxial tensile |
Flexible substrate | PET [109] | 1 L | −0.7–0.7% | Uniaxial |
Flexible substrate | PVA [110] | 1 L | 0–1.49% | Uniaxial tensile |
Flexible substrate | Polyimide [111] | 1–2 L | 0–0.32% | Uniaxial tensile |
Flexible substrate | Polyimide [112] | 2 L | 0–1.19% | biaxial |
Flexible substrate | PDMS [113] | 1 L | 0–4.8% | Uniaxial tensile |
Flexible substrate | PDMS [114] | 2–10 L | ~2.2% | Uniaxial tensile |
Lattice mismatch | Si/SiO2 [115] | 1 L | ~1.24% | Intrinsic tensile |
Lattice mismatch | HOPG [116] | 1 L | ~1.76% | Anisotropic tensile |
Thermal mismatch | Si/SiO2 [113] | 1 L | ~1.0% | Intrinsic tensile |
Thermal mismatch | Si/SiO2 [117] | 1 L | 0.4%; 0.6% | Intrinsic tensile |
Thermal mismatch | Si/SiO2 [118] | 1 L | ~0.76% | Intrinsic tensile |
Thermal mismatch | Si/SiO2 [119] | 2 L | ~0.34%; | Intrinsic compressive |
Thermal mismatch | Sapphire [117] | 1 L | 0.15%; 0.2% | Intrinsic tensile |
Thermal mismatch | h-BN [117] | 1 L | ~0.8%; ~0.2% | Intrinsic tensile |
Thermal mismatch | Mica [117] | 1 L | ~0.8%; ~0.2% | Intrinsic tensile |
Thermal mismatch | PDMS [120] | 1 L | <−0.2% | Biaxial compressive |
Thermal mismatch | Al2O3 [72,73] | ~60 nm | −0.29–−0.45% | Biaxial compressive |
Thermal mismatch | m-quartz [121] | 1 L | ~−0.776% | Uniaxial compressive |
Alloying | MoS2xSe2(1−x) [122] | 1 L | <4% | Biaxial tensile |
Creating buckles | Gel-film [104] | 3−5 L | 0.2–2.5% | Uniaxial tensile |
Creating buckles | PDMS [114] | 2–10 L | ~2.2% | Uniaxial |
Creating buckles | PDMS [105] | 2–10 L | ~1–~2% | Uniaxial compressive |
Creating buckles | Al2O3 [72,73] | ~60 nm | −0.45–1.7% | Biaxial |
Creating buckles | m-quartz [121] | 1 L | 0.14–1.58% | Uniaxial tensile |
Creating buckles | Au films [123] | 1 L | −1.16–2.04% | Uniaxial |
Creating buckles | Si/SiO2 [124] | 10–21 nm | 0.32–1.11% | Uniaxial tensile |
Patterned substrate | Holey Si3N4 [125] | 2 L | ~1.8% | Biaxial tensile |
Patterned substrate | Rippled Si/SiO2 [126] | 4 L | ~0.5% | Uniaxial tensile |
Patterned substrate | SiO2 nanocones [127] | 1 L | ~0.565% | Biaxial tensile |
Patterned substrate | SiO2 nanopillars [128] | 1 L | ~2% | Uniaxial tensile |
Patterned substrate | Cone-Al2O3 [129] | 2 L | ~0.04% | Tensile/compressive |
Patterned substrate | Pyramid-Al2O3[129] | 2 L | ~0.05% | Tensile/compressive |
Patterned substrate | ZnO rods [130] | 1 L | 0–~0.6% | Periodic biaxial |
Bubbles | PDMS [131] | 1, few | 2.9−3.5% | Biaxial tensile |
Bubbles | h-BN [132] | 1 L | ~2% | Gradient tensile |
Bubbles | Si/SiO2 cavity [133] | multi- | −0.8–1.5% | Biaxial, >5.6% |
AFM tip | Si/SiO2 [134] | 1–3 L | δmem: ~33 nm | Isotropic |
AFM tip | Si/SiO2 [135] | 1 L | 4.7 × 10−5 F | Isotropic |
Piezoelectric substrate | PMN-PT [136] | 3 L | 0–0.2% | Biaxial compressive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Xiang, G. Strain-Modulated Magnetism in MoS2. Nanomaterials 2022, 12, 1929. https://doi.org/10.3390/nano12111929
Ren H, Xiang G. Strain-Modulated Magnetism in MoS2. Nanomaterials. 2022; 12(11):1929. https://doi.org/10.3390/nano12111929
Chicago/Turabian StyleRen, Hongtao, and Gang Xiang. 2022. "Strain-Modulated Magnetism in MoS2" Nanomaterials 12, no. 11: 1929. https://doi.org/10.3390/nano12111929
APA StyleRen, H., & Xiang, G. (2022). Strain-Modulated Magnetism in MoS2. Nanomaterials, 12(11), 1929. https://doi.org/10.3390/nano12111929