Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver Nanowire Using Centrifugal Spinning and Annealing
2.3. Characterization
3. Results
3.1. Fibrillation of the Silver Nanowire
3.2. Effect of PVP on the Morphology of the Silver Nanofiber
3.3. Effect of Needle Size on the Morphology of the Silver Microfiber
3.4. Effect of Annealing Temperature on the Morphology of the Silver Microfiber
3.5. Electrical Properties of the Silver Microfiber
4. Discussion and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Song, J.; Yang, C.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Li, C.; Qin, B.; Zhang, Y.; Varzi, A.; Passerini, S.; Wang, J.Y.; Dong, J.M.; Zeng, D.L.; Liu, Z.H.; Cheng, H.S. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv. Energy Mater. 2019, 9, 1803422. [Google Scholar] [CrossRef]
- Dong, X.; Si, Y.; Chen, C.; Ding, B.; Deng, H. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266. [Google Scholar] [CrossRef]
- Chen, C.; Dirican, M.; Zhang, X. Centrifugal Spinning—High Rate Production of Nanofibers. In Electrospinning: Nanofabrication and Applications; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 321–338. [Google Scholar]
- Butcher, A.L.; Offeddu, G.S.; Oyen, M.L. Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol. 2014, 32, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Chen, P.; Xie, M.; Wu, C.F.; Luo, Y.F.; Wang, W.T.; Jiang, J.; Liang, G.L. Cell environment-differentiated self-assembly of nanofibers. J. Am. Chem. Soc. 2016, 138, 11128–11131. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.F.; Xiong, J.; Wang, J.; Parida, K.; Lee, P.S. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2018, 44, 248–255. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, S.; Wu, Z.; Luan, D.; David Lou, X. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 2021, 7, eabg3626. [Google Scholar] [CrossRef]
- Chen, H.S.; Miller, C.E. Centrifugal spinning of metallic glass filaments. Mater. Res. Bull. 1976, 11, 49–54. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y. Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polym. Rev. 2014, 54, 677–701. [Google Scholar] [CrossRef]
- Dai, H.; Sun, J.; Li, Z.; Yu, X.X.; Zhao, J.F.; Fang, H.J.; Zhu, Z.F. Ag nanowire@ nano-groove fabrication for enhanced light harvesting through silicon chemical etching. Trans. Indian Inst. Met. 2018, 71, 1681–1686. [Google Scholar] [CrossRef]
- Sun, N.; Wang, G.G.; Zhao, H.X.; Cai, Y.W.; Li, G.Z.; Zhang, X.N.; Wang, B.L.; Han, J.C.; Wang, Y.H. Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy 2021, 90, 106639. [Google Scholar] [CrossRef]
- Wang, G.; Yu, D.; Kelkar, A.D.; Zhang, L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog. Polym. Sci. 2017, 75, 73–107. [Google Scholar] [CrossRef]
- Li, T.; Lv, Y.; Su, J.; Wang, Y.; Yang, Q.; Zhang, Y.W.; Zhou, J.C.; Xu, L. Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv. Sci. 2017, 4, 1700226. [Google Scholar] [CrossRef]
- Díaz-García, Á.; Law, J.; Cota, A.; Bellido-Correa, A.; Ramírez-Rico, J.; Schäfer, R.; Franco, V. Novel procedure for laboratory scale production of composite functional filaments for additive manufacturing. Mater. Today Commun. 2020, 24, 101049. [Google Scholar] [CrossRef]
- Chinapang, P.; Okamura, M.; Itoh, T.; Kondo, M.; Masaoka, S. Development of a framework catalyst for photocatalytic hydrogen evolution. Commun. Chem. 2018, 54, 1174–1177. [Google Scholar] [CrossRef]
- Esmaeili, M.; Madaeni, S.S.; Barzin, J. The dependence of morphology of solid polymer electrolyte membranes on transient salt type: Effect of cation type. Polym. Int. 2010, 59, 1006–1013. [Google Scholar] [CrossRef]
- Wu, C.; Mosher, B.P.; Lyons, K.; Zeng, T.F. Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. J. Nanosci. Nanotechnol. 2010, 10, 2342–2347. [Google Scholar] [CrossRef]
- Sağlam, G.; Borazan, I.; Hoşgün, H.L.; Demir, A.; Bedelolu, A.C. Effect of molar ratio of PVP/AgNO3 and molecular weight of PVP on the synthesis of silver nanowires. Nonlinear Opt. Quantum Opt. 2017, 48, 123–132. [Google Scholar]
- Li, Y.; Guo, S.; Yang, H.; Chao, Y.; Jiang, S.; Wang, C. One-step synthesis of ultra-long silver nanowires of over 100 μm and their application in flexible transparent conductive films. RSC Adv. 2018, 8, 8057–8063. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luo, H.; Zhang, M.; Zu, X.; Li, Z.; Yi, G. Aligned chemically etched silver nanowire monolayer as surface-enhanced Raman scattering substrates. Nanoscale Res. Lett. 2017, 12, 587. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yang, H.; Li, Y.; Chen, L.; Chen, J. A novel synthesis of silver nanowires by using 6-chlorohexylzinc bromide as an additive for low haze transparent conductive films. RSC Adv. 2019, 9, 18868–18873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjmand, M.; Moud, A.A.; Li, Y.; Sundararaj, U. Outstanding electromagnetic interference shielding of silver nanowires: Comparison with carbon nanotubes. RSC Adv. 2015, 5, 56590–56598. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, X.; Chen, J.; Wang, J.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453. [Google Scholar] [CrossRef]
- Chou, K.S.; Ren, C.Y. Synthesis of nanosized silver particles by chemical reduction method. Mater. Chem. Phys. 2000, 64, 241–246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Tang, S.; Wu, Z.; Chen, Y.; Li, Z.; Wang, Z.; Zhou, J. Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures. Nanomaterials 2022, 12, 2145. https://doi.org/10.3390/nano12132145
Zhang X, Tang S, Wu Z, Chen Y, Li Z, Wang Z, Zhou J. Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures. Nanomaterials. 2022; 12(13):2145. https://doi.org/10.3390/nano12132145
Chicago/Turabian StyleZhang, Xujing, Songsong Tang, Zhaokun Wu, Ye Chen, Zhen Li, Zongqian Wang, and Jian Zhou. 2022. "Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures" Nanomaterials 12, no. 13: 2145. https://doi.org/10.3390/nano12132145
APA StyleZhang, X., Tang, S., Wu, Z., Chen, Y., Li, Z., Wang, Z., & Zhou, J. (2022). Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures. Nanomaterials, 12(13), 2145. https://doi.org/10.3390/nano12132145