A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties
Abstract
:1. Introduction
2. Computational Material Design
Mean-Field Homogenization Using Effective Medium Theories
3. Experimental
3.1. Materials and Synthesis Details
3.2. Characterization and Testing Details
4. Results and Discussion
4.1. Computational Prediction of Effective Properties
4.2. Characterization and Morphology of Synthesized Samples
4.3. Validation of Predictions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemm, H. Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 2010, 93, 1501–1522. [Google Scholar] [CrossRef]
- Kurama, S.; Schulz, I.; Herrmann, M. Wear behaviour of α-and α/β-SiAlON ceramics stabilized with Nd2O3 and Y2O3. J. Eur. Ceram. Soc. 2009, 29, 155–162. [Google Scholar] [CrossRef]
- Bitterlich, B.; Bitsch, S.; Friederich, K. SiAlON based ceramic cutting tools. J. Eur. Ceram. Soc. 2008, 28, 989–994. [Google Scholar] [CrossRef]
- Oyama, Y.; Kamigaito, O. Solid solubility of some oxides in Si3N4. Jpn. J. Appl. Phys. 1971, 10, 1637. [Google Scholar] [CrossRef]
- Jack, K.H.; Wilson, W.I. Ceramics based on the Si-Al-ON and related systems. Nat. Phys. Sci. 1972, 238, 28–29. [Google Scholar] [CrossRef]
- El-Amir, A.A.M.; El-Maddah, A.A.; Ewais, E.M.M.; El-Sheikh, S.M.; Bayoumi, I.M.I.; Ahmed, Y.M.Z. Sialon from synthesis to applications: An overview. J. Asian Ceram. Soc. 2021, 9, 1390–1418. [Google Scholar] [CrossRef]
- Narciso, F.J.; Rodriguez-Reinoso, F. Synthesis of β-SiAlON from clays: Effect of starting materials. J. Mater. Chem. 1994, 4, 1137–1141. [Google Scholar] [CrossRef]
- Haubner, R.; Herrmann, M.; Lux, B.; Petzow, G.; Weissenbacher, R.; Wilhelm, M. High Performance Non-Oxide Ceramics II; Springer: Berlin/Heidelberg, Germany, 2003; Volume 102, ISBN 3540456236. [Google Scholar]
- Mohamedkhair, A.K.; Hakeem, A.S.; Drmosh, Q.A.; Mohammed, A.S.; Baig, M.M.; Ul-Hamid, A.; Gondal, M.A.; Yamani, Z.H. Fabrication and Characterization of Transparent and Scratch-Proof Yttrium/Sialon Thin Films. Nanomaterials 2020, 10, 2283. [Google Scholar] [CrossRef]
- Cao, G.Z.; Metselaar, R. .alpha.’-Sialon ceramics: A review. Chem. Mater. 1991, 3, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-W.; Rosenflanz, A. A tough SiAlON ceramic based on α-Si3N4 with a whisker-like microstructure. Nature 1997, 389, 701–704. [Google Scholar] [CrossRef]
- Richerson, D.W.; Lee, W.E. Modern Ceramic Engineering: Properties, Processing, and Use in Design; CRC Press: Boca Raton, FL, USA, 2018; ISBN 149871692X. [Google Scholar]
- Izhevskiy, V.A.; Genova, L.A.; Bressiani, J.C.; Aldinger, F. Progress in SiAlON ceramics. J. Eur. Ceram. Soc. 2000, 20, 2275–2295. [Google Scholar] [CrossRef]
- Narciso, F.J.; Linares-Solano, A.; Rodriguez-Reinoso, F. Synthesis of β-sialon from coals or natural graphite. J. Mater. Res. 1995, 10, 727–735. [Google Scholar] [CrossRef]
- Biswas, M.; Sahoo, A.; Muraleedharan, K.; Bandyopadhyay, S. Crystal Structure of 27R-SiAlON Synthesized Under Carbothermal Nitridation. Trans. Indian Ceram. Soc. 2021, 80, 1–5. [Google Scholar] [CrossRef]
- Kaya, P.; Gregori, G.; Yordanov, P.; Ayas, E.; Habermeier, H.-U.; Maier, J.; Turan, S. An alternative composite approach to tailor the thermoelectric performance in SiAlON and SiC. J. Eur. Ceram. Soc. 2017, 37, 3367–3373. [Google Scholar] [CrossRef]
- Chen, I.-W.; Wang, X.-H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000, 404, 168–171. [Google Scholar] [CrossRef]
- Yin, L.; Jones, M.I. Fabrication and properties of Sialon-ZrN composites by two-step sintering. Int. J. Refract. Met. Hard Mater. 2020, 92, 105292. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.-A. Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. J. Eur. Ceram. Soc. 2016, 36, 2647–2652. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Chen, J.; Zhou, W.; Zhao, Y.; Feng, P. Microstructures and mechanical properties of Mo2FeB2-based cermets prepared by two-step sintering technique. Int. J. Refract. Met. Hard Mater. 2018, 72, 56–62. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Yao, G.; Zu, G.; Wu, D.; Hao, Y. Synthesis and characterization of dense and fine nickel ferrite ceramics through two-step sintering. Ceram. Int. 2012, 38, 3343–3350. [Google Scholar] [CrossRef]
- Canarslan, Ö.S.; Koroglu, L.; Ayas, E.; Canarslan, N.S.; Kara, A.; Veronesi, P. Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity. Ceram. Int. 2021, 47, 828–835. [Google Scholar] [CrossRef]
- Al Malki, M.M.; Khan, R.M.A.; Hakeem, A.S.; Hampshire, S.; Laoui, T. Effect of Al metal precursor on the phase formation and mechanical properties of fine-grained SiAlON ceramics prepared by spark plasma sintering. J. Eur. Ceram. Soc. 2017, 37, 1975–1983. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, M.; Zhang, H.; Zheng, Z.; Wang, Z.; Cheng, H.; Wang, P.; Liu, Y.; Huang, B. Fabrication of ZnO Ceramics with Defects by Spark Plasma Sintering Method and Investigations of Their Photoelectrochemical Properties. Nanomaterials 2021, 11, 2506. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, W.; Sun, Y.; Guan, S.; Chen, Y. Microstructural Evolution and Mechanical Properties of Graphene Oxide-Reinforced Ti6Al4V Matrix Composite Fabricated Using Spark Plasma Sintering. Nanomaterials 2021, 11, 1440. [Google Scholar] [CrossRef] [PubMed]
- Benavente, R.; Salvador, M.D.; García-Moreno, O.; Peñaranda-Foix, F.L.; Catalá-Civera, J.M.; Borrell, A. Microwave, Spark Plasma and Conventional Sintering to Obtain Controlled Thermal Expansion β-Eucryptite Materials. Int. J. Appl. Ceram. Technol. 2015, 12, E187–E193. [Google Scholar] [CrossRef] [Green Version]
- Hakeem, A.S.; Laoui, T.; Ehsan, M.A.; Ahmed, B.A. Spark Plasma Method for Making cBN/SiAlON Ceramic. U.S. Patent No. 10,550,042, 4 February 2020. [Google Scholar]
- Nekouee, K.A.; Khosroshahi, R.A. Preparation and characterization of β-SiAlON/TiN nanocomposites sintered by spark plasma sintering and pressureless sintering. Mater. Des. 2016, 112, 419–428. [Google Scholar] [CrossRef]
- Maglica, A.; Krnel, K.; Pribošič, I.; Kosmač, T. Preparation and properties of β-SiAloN/ZrN nano-composites from ZrO2-coated Si3N4 powder. Process. Appl. Ceram. 2007, 1, 49–55. [Google Scholar] [CrossRef]
- Yin, L.; Gao, W.; Jones, M.I. Wear behaviour and electrical conductivity of β-Sialon-ZrN composites fabricated by reaction bonding and gas pressure sintering process. Ceram. Int. 2019, 45, 2266–2274. [Google Scholar] [CrossRef]
- Li, X.; Yin, S.; Huang, S.; Luo, H.; Tang, Q. Fabrication of Durable Superhydrophobic Mg Alloy Surface with Water-Repellent, Temperature-Resistant, and Self-Cleaning Properties. Vacuum 2020, 173, 109172. [Google Scholar] [CrossRef]
- Grigoriev, S.; Pristinskiy, Y.; Volosova, M.; Fedorov, S.; Okunkova, A.; Peretyagin, P.; Smirnov, A. Wire electrical discharge machining, mechanical and tribological performance of TiN reinforced multiscale SiAlON ceramic composites fabricated by spark plasma sintering. Appl. Sci. 2021, 11, 657. [Google Scholar] [CrossRef]
- Ahmed, B.A.; Hakeem, A.S.; Laoui, T.; Khan, R.M.A.; Al Malki, M.M.; Ul-Hamid, A.; Khalid, F.A.; Bakhsh, N. Effect of precursor size on the structure and mechanical properties of calcium-stabilized sialon/cubic boron nitride nanocomposites. J. Alloys Compd. 2017, 728, 836–843. [Google Scholar] [CrossRef]
- Biswas, M.; Sarkar, S.; Halder, R.; Bysakh, S.; Muraleedharan, K.; Bandyopadhyay, S. Sintering and characterization of a hard-to-hard configured composite: Spark plasma sintered WC reinforced α−SiAlON. J. Phys. Chem. Solids 2020, 145, 109548. [Google Scholar] [CrossRef]
- Akin, S.R.K.; Turan, S.; Gencoglu, P.; Mandal, H. Effect of SiC addition on the thermal diffusivity of SiAlON ceramics. Ceram. Int. 2017, 43, 13469–13474. [Google Scholar] [CrossRef]
- Heydarian, A.; Abdolkarim Sajjadi, S.; Johnsson, M. A proposed model for spark plasma sintering of SiC-Si nanocomposite with different SiC particle sizes. J. Compos. Mater. 2020, 54, 2599–2609. [Google Scholar] [CrossRef]
- Khan, R.M.A.; Ahmed, B.A.; Al Malki, M.M.; Hakeem, A.S.; Laoui, T. Synthesis of hard and tough calcium stabilized α-sialon/SiC ceramic composites using nano-sized precursors and spark plasma sintering. J. Alloys Compd. 2018, 757, 200–208. [Google Scholar] [CrossRef]
- Liu, L.; Ye, F.; Zhang, Z.; Zhou, Y. Elongation of α-SiC Particles in Spark Plasma Sintered α-SiAlON/α-SiC Composites. J. Am. Ceram. Soc. 2011, 94, 336–339. [Google Scholar] [CrossRef]
- Adeniyi, A.S.; Ahmed, B.A.; Hakeem, A.S.; Patel, F.; Bakare, A.I.; Ul-Hamid, A.; Khan, A.A.; Ehsan, M.A.; Khan, T.I. The Property Characterization of α-Sialon/Ni Composites Synthesized by Spark Plasma Sintering. Nanomaterials 2019, 9, 1682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, T.; Yao, B.; Liu, Z. Perspectives in the new era of materials intelligent design. Mater. Lab 2022, 1, 220013–220017. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Arif, A.F.M. Generalized effective medium theory for particulate nanocomposite materials. Materials 2016, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Acikbas, N.C. Tribological behavior of αı/βı-SiAlON-TiN composites. J. Eur. Ceram. Soc. 2018, 38, 2279–2288. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M. Prediction of fracturess toughness of ceramic composites as function of microstructure: II. analytical model. J. Mech. Phys. Solids 2013, 61, 489–503. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M. Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations. J. Mech. Phys. Solids 2013, 61, 472–488. [Google Scholar] [CrossRef]
- Caccia, M.; Rodríguez, A.; Narciso, J. Diamond Surface Modification to Enhance Interfacial Thermal Conductivity in Al/Diamond Composites. JOM 2014, 66, 920–925. [Google Scholar] [CrossRef]
- Molina, J.-M.; Rodríguez-Guerrero, A.; Louis, E.; Rodríguez-Reinoso, F.; Narciso, J. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites. Materials 2017, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tanaka, Y.; Goto, M.; Zhou, Y.; Yagi, K. Thermal conductivity of SiC fine particles reinforced al alloy matrix composite with dispersed particle size. J. Appl. Phys. 2004, 95, 722–726. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Siddiqui, M.U.; Kabeer, R.; Hakeem, A.; Kareem, L.; Arif, A.F. A computational and experimental study on the effective properties of Al2O3-Ni composites. Int. J. Appl. Ceram. Technol. 2017, 14, 766–778. [Google Scholar] [CrossRef]
- Doghri, I.; Tinel, L. Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int. J. Plast. 2005, 21, 1919–1940. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Waqar, T.; Hakeem, A.S.; Arif, A.F.M.; Al-Athel, K.S. Design and Development of Hybrid Al2O3 Based Composites with Toughening and Self-Lubricating Second-Phase Inclusions. Materials 2019, 12, 2378. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, Y.; Shimono, M.; Tanaka, Y.; Yamazaki, M. Computation of interfacial thermal resistance by phonon diffuse mismatch model. Mater. Trans. 2007, 48, 2349–2352. [Google Scholar] [CrossRef] [Green Version]
- Munro, R.G.; Freiman, S.W.; Baker, T.L. Fracture Toughness/Fracture Energy Data for Ceramics. Available online: https://srdata.nist.gov/CeramicDataPortal/ftmain (accessed on 7 May 2022).
- Kumai, S.; King, J.E.; Knott, J.F. Fatigue in SiC-particulate-reinforced aluminium alloy composites. Mater. Sci. Eng. A 1991, 146, 317–326. [Google Scholar] [CrossRef]
- Zhou, C.R.; Yu, Z.B.; Krstic, V.D. Pressureless sintered self-reinforced Y-α-SiAlON ceramics. J. Eur. Ceram. Soc. 2007, 27, 437–443. [Google Scholar] [CrossRef]
- Akhtar, S.S. A systematic design to develop high-performance sintered particulate copper-composite as heat spreader material. Eng. Sci. Technol. Int. J. 2022, 27, 101019. [Google Scholar]
- Azam, M.U.; Ahmed, B.A.; Hakeem, A.S.; Irshad, H.M.; Laoui, T.; Ehsan, M.A.; Patel, F.; Khalid, F.A. Tribological behaviour of alumina-based nanocomposites reinforced with uncoated and Ni-coated cubic boron nitride. J. Mater. Res. Technol. 2019, 8, 5066–5079. [Google Scholar] [CrossRef]
- Evans, A.G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 1990, 73, 187–206. [Google Scholar] [CrossRef]
Material | Elastic Modulus (GPa) | Shear Modulus (GPa) | Bulk Modulus(GPa) | Poisson’s Ratio | Fracture Energy (J/m2) | CTE (10−6/K) | Thermal Cond. (W/mK) |
---|---|---|---|---|---|---|---|
Ca-α-SiAlON | 306 | 116 | 200 | 0.27 | 60 | 2.60 | 5.85 |
Nickel (Ni) | 207 | 79 | 183 | 0.31 | - | 13.1 | 60.1 |
Cobalt (Co) | 211 | 79 | 193 | 0.32 | - | 12.5 | 69.2 |
Chromium (Cr) | 248 | 110 | 153 | 0.21 | - | 6.20 | 69.1 |
Cubic Boron Nitride (cBN) | 367 | 180 | 228 | 0.15 | 15 | 4.80 | 42.1 |
Silicon Carbide (SiC) | 410 | 180 | 250 | 0.14 | 27 | 4.00 | 120 |
Tungsten Carbide (WC) | 630 | 243 | 375 | 0.24 | 85 | 5.40 | 85 |
Titanium Nitride (TiN) | 450 | 240 | 325 | 0.12 | 31.5 | 9.35 | 19.2 |
Zirconium Diboride (ZrB2) | 475 | 215 | 300 | 0.13 | 24 | 6.20 | 83.8 |
Diamond | 1000 | 455 | 539 | 0.29 | 3.52 | 1.18 | 2000 |
Reinforcement Type | Reinforcement Composition (wt. %) | CaO (wt. %) | SiO2 (wt. %) | AlN (wt. %) | Si3N4 (wt. %) |
---|---|---|---|---|---|
Ni | 0 | 7.57 | 2.03 | 19.37 | 71.03 |
10 | 6.82 | 1.83 | 17.43 | 63.93 | |
20 | 7.06 | 1.62 | 15.500 | 56.82 | |
30 | 5.30 | 1.42 | 13.56 | 49.72 | |
SiC | 0 | 7.57 | 2.03 | 19.37 | 71.07 |
10 | 6.81 | 1.83 | 17.43 | 63.96 | |
20 | 6.06 | 1.62 | 15.50 | 56.86 | |
30 | 5.30 | 1.42 | 13.56 | 49.75 |
Property | Monolithic Ca-α-SiAlON | Ni/Ca-α-SiAlON Composites | |||||
---|---|---|---|---|---|---|---|
Measured | 10 wt% | 20 wt% | 30 wt% | 10 wt% | 20 wt% | 30 wt% | |
Measured | Predicted | ||||||
Porosity * (%) | 2 | 3 | 10 | 17 | Predictions are based on experimentally measured porosity * | ||
Thermal Conductivity (W/m-K) | 5.65 (1) | 5.81 (2) | 5.79 (3) | 5.81 (4) | 6.08 | 5.96 | 5.84 |
CTE (10−6/K) | 2.63 (1) | 3.18 (2) | 2.90 (2) | 2.77 (3) | 3.25 | 3.12 | 3.07 |
Elastic Modulus ** (MPa) | - | - | - | - | 277 | 231 | 192 |
Hardness ** HV10 (GPa) | 21.1 (6) | 18.3 (8) | 17.1 (6) | 16.5 (7) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, H.S.; Abubakar, A.A.; Hakeem, A.S. A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties. Nanomaterials 2022, 12, 2176. https://doi.org/10.3390/nano12132176
Syed HS, Abubakar AA, Hakeem AS. A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties. Nanomaterials. 2022; 12(13):2176. https://doi.org/10.3390/nano12132176
Chicago/Turabian StyleSyed, Hasan Sohail, Abba Abdulhamid Abubakar, and Abbas Saeed Hakeem. 2022. "A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties" Nanomaterials 12, no. 13: 2176. https://doi.org/10.3390/nano12132176
APA StyleSyed, H. S., Abubakar, A. A., & Hakeem, A. S. (2022). A Material-by-Design Approach to Develop Ceramic- and Metallic-Particle-Reinforced Ca-α-SiAlON Composites for Improved Thermal and Structural Properties. Nanomaterials, 12(13), 2176. https://doi.org/10.3390/nano12132176