Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sputtering of LiCoO2 Thin Films
2.3. Electrochemical Characterization
2.4. Material Characterization
3. Results
3.1. X-ray Diffraction Analysis
3.2. Morphological Investigation
3.3. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoon, Y.; Park, C.; Kim, J.; Shin, D. Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries. J. Power Sources 2013, 226, 186–190. [Google Scholar] [CrossRef]
- Castaneda, H. The impedance response of different mechanisms for LiCoO2/acetylene carbon electrodes in alkaline solutions under polarization conditions. Electrochim. Acta 2013, 112, 562–576. [Google Scholar] [CrossRef]
- Minami, T.; Tatsumisago, M.; Wakihara, M.; Iwakura, C.; Kohjiya, S.; Tanaka, I. (Eds.) Solid State Ionics for Batteries; Springer: Tokyo, Japan, 2005. [Google Scholar] [CrossRef]
- Jeon, S.-W.; Lim, J.-K.; Lim, S.-H.; Lee, S.-M. As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering. Electrochim. Acta 2005, 51, 268–273. [Google Scholar] [CrossRef]
- Wei, G.; Haas, T.E.; Goldner, R.B. Thin films of lithium cobalt oxide. Solid State Ion. 1992, 58, 115–122. [Google Scholar] [CrossRef]
- Wang, B.; Bates, J.B.; Hart, F.X.; Sales, B.C.; Zuhr, R.A.; Robertson, J.D. Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes. J. Electrochem. Soc. 1996, 143, 3203–3213. [Google Scholar] [CrossRef]
- Xia, H.; Lu, L. Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD. Electrochim. Acta 2007, 52, 7014–7021. [Google Scholar] [CrossRef]
- Xia, H.; Lu, L.; Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 2006, 159, 1422–1427. [Google Scholar] [CrossRef]
- Kim, M. The electrochemical properties of thin-film LiCoO2 cathode prepared by sol–gel process. Solid State Ion. 2002, 152–153, 267–272. [Google Scholar] [CrossRef]
- Rao, M. Growth and microstructural features of laser ablated LiCoO2 thin films. J. Cryst. Growth 2010, 312, 2799–2803. [Google Scholar] [CrossRef]
- Tomy, M.R.; Kumar, K.A.; Anand, P.B.; Jayalekshmi, S. Effect of annealing on the electrochemical properties of the Li–Mn–O thin films, prepared by high frequency RF magnetron sputtering. J. Phys. Chem. Solids 2012, 73, 559–563. [Google Scholar] [CrossRef]
- Stockhoff, T.; Gallasch, T.; Berkemeier, F.; Schmitz, G. Ion beam sputter-deposition of LiCoO2 films. Thin Solid Film. 2012, 520, 3668–3674. [Google Scholar] [CrossRef]
- Huang, W.; Frech, R. Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1−x MxO2 (M = Ni or Ti). Solid State Ion. 1996, 86–88, 395–400. [Google Scholar] [CrossRef]
- Fragnaud, P.; Brousse, T.; Schleich, D. Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries. J. Power Sources 1996, 63, 187–191. [Google Scholar] [CrossRef]
- Whitacre, J.F.; West, W.C.; Brandon, E.; Ratnakumar, B.V. Crystallographically Oriented Thin-Film Nanocrystalline Cathode Layers Prepared without Exceeding 300 °C. J. Electrochem. Soc. 2001, 148, A1078–A1084. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Hussain, O.M. Sputtered LiCoO2 Cathode Materials for All-Solid-State Thin-Film Lithium Microbatteries. Materials 2019, 12, 2687. [Google Scholar] [CrossRef] [Green Version]
- Dudney, N.J.; Jang, Y.-I. Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 μm thick LiCoO2. J. Power Sources 2003, 119–121, 300–304. [Google Scholar] [CrossRef]
- Bates, J.B.; Dudney, N.J.; Neudecker, B.J.; Hart, F.X.; Jun, H.P.; Hackney, S.A. Preferred Orientation of Polycrystalline LiCoO2 Films. J. Electrochem. Soc. 2000, 147, 59. [Google Scholar] [CrossRef]
- Jan, D.J.; Lee, C.C.; Yu, Y.J.; Chiang, H.W. Evaluation of lithium cobalt oxide films deposited by radio frequency magnetron sputtering as thin-film battery cathodes. Jpn. J. Appl. Phys. 2019, 58, 085501. [Google Scholar] [CrossRef]
- Trask, J.; Anapolsky, A.; Cardozo, B.; Januar, E.; Kumar, K.; Miller, M.; Brown, R.; Bhardwaj, R. Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power Sources 2017, 350, 56–64. [Google Scholar] [CrossRef]
- Noh, J.-P.; Cho, G.-B.; Jung, K.-T.; Kang, W.-G.; Ha, C.-W.; Ahn, H.-J.; Ahn, J.-H.; Nam, T.-H.; Kim, K.-W. Fabrication of LiCoO2 thin film cathodes by DC magnetron sputtering method. Mater. Res. Bull. 2012, 47, 2823–2826. [Google Scholar] [CrossRef]
- Kumar, P.J.; Babu, K.J.; Hussain, O.M. RF Magnetron Sputter Deposited Nanocrystalline LiCoO2 Film Cathodes on Flexible Substrates. Adv. Sci. Eng. Med. 2012, 4, 190–199. [Google Scholar] [CrossRef]
- Prachařová, J.; Přidal, J.; Bludská, J.; Jakubec, I.; Vorlíček, V.; Málková, Z.; Makris, T.D.; Giorgi, R.; Jastrabık, L. LiCoO2 thin-film cathodes grown by RF sputtering. J. Power Sources 2002, 108, 204–212. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The highscore suite. Powder Diffr. 2014, 29 (Suppl. S2), S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Musolino, M.G.; Busacca, C.; Mauriello, F.; Pietropaolo, R. Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions. Appl. Catal. A Gen. 2010, 379, 77–86. [Google Scholar] [CrossRef]
- Tintignac, S.; Baddour-Hadjean, R.; Pereira-Ramos, J.-P.; Salot, R. High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect. Electrochimica Acta 2012, 60, 121–129. [Google Scholar] [CrossRef]
- Xiong, S.; Chen, J.S.; Lou, X.W.; Zeng, H.C. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 2011, 22, 861–871. [Google Scholar] [CrossRef]
- Liao, C.-L.; Fung, K.-Z. Lithium cobalt oxide cathode film prepared by rf sputtering. J. Power Sources 2004, 128, 263–269. [Google Scholar] [CrossRef]
- Dahn, J.R.; von Sacken, U.; Michael, C.A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ion. 1990, 44, 87–97. [Google Scholar] [CrossRef]
- Bohne, L.; Pirk, T.; Jaegermann, W. Investigations on the influence of the substrate on the crystal structure of sputtered LiCoO2. J. Solid State Electrochem. 2011, 17, 2095–2099. [Google Scholar] [CrossRef]
- Rahn, J.; Hüger, E.; Dörrer, L.; Ruprecht, B.; Heitjans, P.; Schmidt, H. Li self-diffusion in lithium niobate single crystals at low temperatures. Phys. Chem. Chem. Phys. 2012, 14, 2427–2433. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Lee, D.; Sinnott, S.B.; Dierolf, V.; Gopalan, V.; Phillpot, S.R. Structure and diffusion of intrinsic defect complexes in LiNbO3 from density functional theory calculations. J. Physics: Condens. Matter 2010, 22, 135002. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys, 2nd ed.; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Qi, W.H.; Wang, M.P. Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 2004, 88, 280–284. [Google Scholar] [CrossRef]
- Shi, F.G. Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 1994, 9, 1307–1314. [Google Scholar] [CrossRef]
- Skripov, V.P.; Koverda, V.P.; Skokov, V.N. Size effect on melting of small particles. Phys. Status Solidi A 1981, 66, 109–118. [Google Scholar] [CrossRef]
- Assael, M.J.; Gialou, K. Measurement of the thermal conductivity of stainless steel AISI 304L up to 550 K. Int. J. Thermophys. 2003, 24, 1145–1153. [Google Scholar] [CrossRef]
- Laubitz, M.J.; Van Der Meer, M.P. The Thermal Conductivity of Platinum between 300 and 1000 °K. Can. J. Phys. 1966, 44, 3173–3183. [Google Scholar] [CrossRef]
- Cho, J.; Losego, M.D.; Zhang, H.; Kim, H.; Zuo, J.-M.; Petrov, I.; Cahill, D.G.; Braun, P.V. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 2014, 5, 4035. [Google Scholar] [CrossRef] [Green Version]
- Shebzukhova, I.G.; Aref’eva, L.P.; Khokonov, K.B. Temperature dependence of the surface energy of various crystal faces of the polymorphic phases of actinides. Phys. Metals Metallogr. 2008, 105, 338–342. [Google Scholar] [CrossRef]
- Ensling, D.; Thißen, A.; Gassenbauer, Y.; Klein, A.; Jaegermann, W. In-Situ Preparation and Analysis of Functional Oxides. Adv. Eng. Mater. 2005, 7, 945–949. [Google Scholar] [CrossRef]
- Dupin, J.-C.; Gonbeau, D.; Benqlilou-Moudden, H.; Vinatier, P.; Levasseur, A. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Film. 2001, 384, 23–32. [Google Scholar] [CrossRef]
- Xiao, D.-L.; Tong, J.; Feng, Y.; Zhong, G.-H.; Li, W.-J.; Yang, C.-L. Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target. Solid State Ion. 2018, 324, 202–206. [Google Scholar] [CrossRef]
- Reimers, J.N.; Dahn, J.R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091. [Google Scholar] [CrossRef]
- Shao-Horn, Y.; Levasseur, S.; Weill, F.; Delmas, C. Probing Lithium and Vacancy Ordering in O3 Layered LixCoO2 (x ≈ 0.5). J. Electrochem. Soc. 2003, 150, A366. [Google Scholar] [CrossRef]
- Wang, C.; Dai, X.; Guan, X.; Jia, W.; Bai, Y.; Li, J. LiCoO2 thin film cathode sputtered onto 500 °C substrate. Electrochim. Acta 2020, 354, 136668. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Lee, S.H.; Cho, S.B.; Nam, S.C. Influence of Two-Step Heat Treatment on Sputtered Lithium Cobalt Oxide Thin Films. J. Electrochem. Soc. 2011, 158, A1313. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, M.; Yan, Y.; Wei, Y.; Liu, W.; Zhang, X.; Li, J.; Fu, Z.; Li, J.; Zhang, X. Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries. J. Mater. Res. 2019, 35, 31–41. [Google Scholar] [CrossRef]
- Kohler, R.; Proell, J.; Ulrich, S.; Trouillet, V.; Indris, S.; Przybylski, M.; Pfleging, W. Laser-assisted structuring and modification of LiCoO2 thin films. In Laser-Based Micro- and Nanopackaging and Assembly III; SPIE: Bellingham, WA, USA, 2009. [Google Scholar]
- Ganesh, K.S.; Kumar, P.J.; Hussain, O.M. Influence of Zr dopant on microstructural and electrochemical properties of LiCoO2 thin film cathodes by RF sputtering. J. Electroanal. Chem. 2018, 828, 71–79. [Google Scholar] [CrossRef]
- Kim, H.-S.; Oh, Y.; Kang, K.H.; Kim, J.H.; Kim, J.; Yoon, C.S. Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery. ACS Appl. Mater. Interfaces 2017, 9, 16063–16070. [Google Scholar] [CrossRef]
- Jung, K.-T.; Cho, G.-B.; Kim, K.-W.; Nam, T.-H.; Jeong, H.-M.; Huh, S.-C.; Chung, H.-S.; Noh, J.-P. Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Film. 2013, 546, 414–417. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Z.; Du, G.; Zhang, P.; Liu, H. LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries. Surf. Coatings Technol. 2010, 204, 1710–1714. [Google Scholar] [CrossRef]
- Noh, J.-P.; Jung, K.-T.; Jang, M.-S.; Kwon, T.-H.; Cho, G.-B.; Kim, K.-W.; Nam, T.-H. Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film Fabricated by DC Magnetron Sputtering. J. Nanosci. Nanotechnol. 2013, 13, 7152–7154. [Google Scholar] [CrossRef] [PubMed]
- Turrell, S.J.; Zekoll, S.; Liu, J.; Grovenor, C.R.; Speller, S.C. Optimization of a potential manufacturing process for thin-film LiCoO2 cathodes. Thin Solid Film. 2021, 735, 138888. [Google Scholar] [CrossRef]
# | Material Type | Deposition Condition, (Deposition Gases, Heating Substrates, Power of Sputtering) | Post Deposition Conditions | Thickness | Micro Battery Type | Initial Discharge Capacity | Voltage Range | Current Rate, Retention % | Num. of Cycles | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | LiCoO2 film | Ar:O2 (3:1), heated substrate at 500 °C (in situ annealing) | - | <1 µm | Li/liquid electrolyte/LiCoO2 | 63 µAh cm−2 µm−1 | 3–4.2 V | 1 C, 84% | 100 | [46] |
2 | LiCoO2 film | Ar, in situ heated substrate 300 °C and 600 °C | Annealing by RTA 10 min at 600 °C in Ar | 0.7 µm | Li/liquid electrolyte/LiCoO2 Li/LIPON/LiCoO2 | 25 µAh cm−2 µm−1 60 µAh cm−2 µm−1 | 3–4.2 V 3–4.2 V | 1 C, 85% 5 C, 100% | 50 100 | [47] |
3 | LiCoO2 film | Ar:O2 (3:1) and (5:1), DC power 130 W | Annealed at 500 °C in atmosphere | - | Li/liquid electrolyte/LiCoO2 | 46 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 8.2% | 100 | [21] |
4 | LiCoO2 film | Ar:O2 (96:4%), | Annealed at 800 °C in Air | 10 µm | Li/LIPON/LiCoO2 | 60 µAh cm−2 µm−1 | 3–4.2V | 0.1 C, 95% | 100 | [20] |
5 | LiCoO2 film | Ar | Annealed at 550 °C, holding time 20 min at O2 | 1.1 µm | Li/liquid electrolyte/LiCoO2 | 37.5 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 3.8% | 50 | [48] |
6 | LiCoO2 film | Ar:O2 (1:2, 1:1, and 2:1), RF power 120, 150, and 180 W | 1 h at 700 °C in air | 1.6 µm | Li/liquid electrolyte/LiCoO2 | 16.7 µAh cm−2 µm−1 | 3–4.2 V | 0.2 C | 20 | [19] |
7 | LiCoO2 film | Ar, laser-patterned | 400 °C and 600 °C in Ar:O2 (1:5) 3 h | 3 µm | Li/liquid electrolyte/LiCoO2 | 140 mAh/g | 3–4.2 V | 0.05 C, 67% | 30 | [49] |
8 | LiCoO2 film | Ar:O2, in situ substrate heated at 250 °C | In O2 two hours 500 °C 600 °C 700 °C | >1 µm | Li/liquid electrolyte/LiCoO2 | 41.8 µAh cm−2 µm−1 52.6 µAh cm−2 µm−1 61.2 µAh cm−2 µm−1 | 3–4.25 V | 10 µA cm−2, 58%, 72% 74% | 50 | [28] |
9 | LiCoO2 film | Ar:O2 (3:1), different deposition pressure parameters changed | 500 °C 2 h in air | <1 µm | Li/liquid electrolyte/LiCoO2 | 67 µAh cm−2 µm−1 | 3–4.2 V | 0.2 C, 95% | 50 | [26] |
10 | Zr doped LiCoO2 film | Ar:O2 (9:1), in situ substrate heated at 250 °C | 600 °C 3 h in air | >1 µm | Li/liquid electrolyte/LiCoO2 | 64 µAh cm−2 µm−1 | 3–4.2 V | 1 C, 98.5% | 25 | [50] |
11 | LiCoO2 film | Ar, | 400–700 °C in O2 | <1 µm | Li/LIPON/LiCoO2 | 40 µAh cm−2 µm−1 (80 mAh g−1) | 3.3–4.2 V | 0.01 C, 78% | 5 | [51] |
12 | LiCoO2 film | Ar:O2 (4:1), DC power 180 W | 600 °C in O2 | 0.5 µm | 30.7 µAh cm−2 (or 56.9 µAh cm−2 µm−1) | 3–4.2 V | 10 µA cm−2, 76% | 30 | [52] | |
13 | LiCoO2 film | Ar:O2 (3:1), RF power 100 W, in situ-heated substrate 400 °C | - | 0.4 µm | Li/liquid electrolyte/LiCoO2 | 54.5 µAh cm−2 µm−1 | 3–4.2 V | 10 µA cm−2, 58.2% | 50 | [53] |
14 | ZrO2 coated LiCoO2 film | Ar:O2 (4:1), DC power 100 W | 600 °C 1 h in O2 | 0.6 µm | Li/liquid electrolyte/LiCoO2 | 12.2 µAh cm−2 µm−1 | 3–4.5 V | 10 µA cm−2, 75% | 40 | [54] |
15 | LiCoO2 film | Ar:O2 | 300–700 °C 1 h in air | >1 µm | Li/liquid electrolyte/LiCoO2 | 132 mAh g−1 (or 62 µAh cm−2 µm−1) | 3–4.3 V | 0.1 C, 70 % | 50 | [55] |
16 | LiCoO2 film | Ar:O2 (5:1), RF power 100 W | 550 °C, 1 h 20 min annealed in argon | 1.2 µm | Li/liquid electrolyte/LiCoO2 | 135 mAh g−1 (50 µAh cm−2 µm−1) 135 mAh g−1 (50 µAh cm−2 µm−1) 115 mAh g−1 42 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 93% 0.5 C, 77% 1 C, 50% | 20 100 100 | Our data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekzhanov, A.; Uzakbaiuly, B.; Mukanova, A.; Bakenov, Z. Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Nanomaterials 2022, 12, 2188. https://doi.org/10.3390/nano12132188
Bekzhanov A, Uzakbaiuly B, Mukanova A, Bakenov Z. Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Nanomaterials. 2022; 12(13):2188. https://doi.org/10.3390/nano12132188
Chicago/Turabian StyleBekzhanov, Akzhan, Berik Uzakbaiuly, Aliya Mukanova, and Zhumabay Bakenov. 2022. "Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries" Nanomaterials 12, no. 13: 2188. https://doi.org/10.3390/nano12132188
APA StyleBekzhanov, A., Uzakbaiuly, B., Mukanova, A., & Bakenov, Z. (2022). Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Nanomaterials, 12(13), 2188. https://doi.org/10.3390/nano12132188