Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Synthesis of Polymer with Different Hydrophobic and Hydrophilic Levels and FITC Labelling
3.2. Physicochemical Characterization of GCPQ Polymers
3.3. Surface Contact Angle (SCA)
3.4. Preparation of Blank and FITC-Labeled GCPQ Micelles
3.5. Biocompatibility Determination and HepG2 Cellular Uptake
3.6. 99mTc Labeling of Q9P35GC Micelles and Radiolabeling Efficiency
3.7. 99mTc Q9P35GC Micelles’ Size by DLS and TEM, Zeta Potential, Serum Stability, and Hemolysis Study
3.8. In Vivo Biodistribution (SPECT Imaging)
3.9. Organ Cumulated Activity, Absorbed Dose Calculation, and Kinetic Modeling of 99mTc-Q9P35GC Micelles
3.10. FITC-Q9P35GC Micelle Distribution in Liver Cells (In Vivo)
3.11. Establishment of Fibrotic Liver Model
3.12. 99mTc-Q9P35GC SPECT Imaging in Rabbit Liver Fibrotic Model and Blocking Study
3.13. Statistical Analysis
4. Results
4.1. Synthesis and Characterization of GCPQ Polymers
4.2. Q9P35GC Exhibited Good Biocompatibility Compared to Q20P15GC, Q13P15GC Polymers against RAW264.7 Cells
4.3. SCA Was Higher for Q9P35GC Than for Q20P15GC and Q13P15GC
4.4. Characterization of Blank Q9P35GC and FITC-Q9P35GC Micelles
4.5. Uptake of FITC-Q9P35GC Micelles in HepG2 Cells Was Higher Than for FITC-Q20P15GC, FITC-Q13P15GC Micelles
4.6. Radiolabeling Efficiency and Physiochemical Characterization of 99mTc-Q9P35GC Micelles
4.7. 99mTc-Q9P35GC Micelles Were Found Biocompatible and Stable
4.8. Organ Dose and Cumulated Activity Findings Support Biodistribution Studies
4.9. Kinetic Modeling
4.10. FITC-Q9P35GC Micelles Showed Higher Uptake in Hepatocytes in In Vivo Studies
4.11. SPECT Imaging and Blocking Studies of 99mTc-Q9P35GC in Fibrotic Rabbit
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Mathur, R.; Singh, S.; Bag, N.; Khan, U.; Ahmad, F.; Gabr, G.A.; Kesharwani, P.; Jain, G.K. 99mTc-Methionine Gold Nanoparticles as a Promising Biomaterial for Enhanced Tumor Imaging. J. Pharm. Sci. 2021, 110, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V. Polymeric contrast agents for medical imaging. Curr. Pharm. Biotechnol. 2000, 1, 183–215. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, A.H.; Winter, P.; Caruthers, S.D.; Harris, T.D.; Williams, T.A.; Allen, J.S.; Lacy, E.K.; Zhang, H.; Scott, M.J.; Hu, G.; et al. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn. Reson. Med. 2005, 53, 621–627. [Google Scholar] [CrossRef]
- De Graaf, W.; Bennink, R.; Veteläinen, R.; van Gulik, T.M. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J. Nucl. Med. 2010, 51, 742–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veres, D.S.; Máthé, D.; Futó, I.; Horváth, I.; Balázs; Karlinger, K.; Szigeti, K. Quantitative liver lesion volume determination by nanoparticle-based SPECT. Mol. Imaging Biol. 2014, 16, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Ponto, J.A. Preparation and dispensing problems associated with technetium Tc-99m radiopharmaceuticals. In Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals; University of New Mexico Health Sciences: Albuquerque NM, USA, 2004; Volume 11, pp. 1–73, Lesson 1. [Google Scholar]
- Saatchi, K.; Häfeli, U. Radiolabelling of biodegradable polymeric microspheres with [99mTc(CO)3]+ and in vivo biodistribution evaluation using microSPECT/CT imaging. Bioconjug. Chem. 2009, 20, 1209–1217. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, R.; Chen, F.; Zhao, L.; Wang, P.; Li, X.; Banyai, I.; Ouyang, Q.; Shi, X.; Shen, M. 99mTc-labeled RGD–polyethylenimine conjugates with entrapped gold nanoparticles in the cavities for dual-mode SPECT/CT imaging of hepatic carcinoma. ACS Appl. Mater. Interfaces 2018, 10, 6146–6154. [Google Scholar] [CrossRef]
- Kim, J.; Lee, N.; Hyeon, T. Recent development of nanoparticles for molecular imaging. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2017, 28, 375. [Google Scholar] [CrossRef]
- Lee, C.-M.; Jeong, H.-J.; Kim, S.-L.; Kim, E.-M.; Kim, D.W.; Lim, S.T.; Jang, K.Y.; Jeong, Y.Y.; Nah, J.-W.; Sohn, M.-H. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes. Int. J. Pharm. 2009, 371, 163–169. [Google Scholar] [CrossRef]
- Nguyed, T.T.B.; Ngan, D.T.; Hai, N.T. Anti-angiogenesis Therapy in Cancer Treatment. VNU J. Sci. Med. Pharm. Sci. 2019, 35, 11–18. [Google Scholar] [CrossRef]
- Zhang, D.; Zhuang, R.; Guo, Z.; Gao, M.; Huang, L.; You, L.; Zhang, P.; Li, J.; Su, X.; Wu, H.; et al. Desmin- and vimentin-mediated hepatic stellate cell-targeting radiotracer (99m)Tc-GlcNAc-PEI for liver fibrosis imaging with SPECT. Theranostics 2018, 8, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S.; Else, P.; Atkins, T.; Hulbert, A. Fatty acid composition of membrane bilayers: Importance of diet polyunsaturated fat balance. BBA-Biomembranes 2012, 1818, 1309–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S.; et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Joshi-Barve, S.; Barve, S.S.; Amancherla, K.; Gobejishvili, L.; Hill, D.; Cave, M.; Hote, P.; McClain, C.J. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 2007, 46, 823–830. [Google Scholar] [CrossRef]
- Moravcova, A.; Ervinková, Z.; Kučera, O.; Mezera, V.; Rychtrmoc, D.; Lotkova, H. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol. Res. 2015, 64, S627–S636. [Google Scholar] [CrossRef]
- Eynaudi, A.; Díaz-Castro, F.; Bórquez, J.C.; Bravo-Sagua, R.; Parra, V.; Troncoso, R. Differential effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria interaction in the hepatic cell line HepG2. Front. Nutr. 2021, 8, 775382. [Google Scholar] [CrossRef]
- Qu, X.; Khutoryanskiy, V.V.; Stewart, A.; Rahman, S.; Papahadjopoulos-Sternberg, B.; Dufes, C.; McCarthy, D.; Wilson, C.G.; Lyons, R.; Carter, K.C.; et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 2006, 7, 3452–3459. [Google Scholar] [CrossRef]
- Kim, A.; McCully, C.; Cruz, R.; Cole, D.E.; Fox, E.; Balis, F.M.; Widemann, B.C. The plasma and cerebrospinal fluid pharmacokinetics of sorafenib after intravenous administration in non-human primates. Investig. New Drugs 2012, 30, 524–528. [Google Scholar] [CrossRef]
- Siew, A.; Le, H.; Thiovolet, M.; Gellert, P.; Schatzlein, A.; Uchegbu, I. Enhanced Oral Absorption of Hydrophobic and Hydrophilic Drugs Using Quaternary Ammonium Palmitoyl Glycol Chitosan Nanoparticles. Mol. Pharm. 2012, 9, 14–28. [Google Scholar] [CrossRef]
- Kanwal, U.; Bukhari, N.I.; Rana, N.F.; Rehman, M.; Hussain, K.; Abbas, N.; Mehmood, A.; Raza, A. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: Uptake by cells and organs. Int. J. Nanomed. 2018, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zia, A.; Finnegan, J.R.; Morrow, J.P.; Yin, W.; Jasieniak, J.J.; Pentzer, E.; Thickett, S.; Davis, T.P.; Kempe, K. Intrinsic Green Fluorescent Cross-Linked Poly(ester amide)s by Spontaneous Zwitterionic Copolymerization. Biomacromolecules 2021, 22, 4794–4804. [Google Scholar] [CrossRef] [PubMed]
- Chooi, K.; Carlos, M.S.; Soundararajan, R.; Gaisford, S.; Arifin, N.; Schätzlein, A.; Uchegbu, I.F. Physical characterisation and long-term stability studies on quaternary ammonium palmitoyl glycol chitosan (GCPQ)—A new drug delivery polymer. J. Pharm. Sci. 2014, 103, 2296–2306. [Google Scholar] [CrossRef] [PubMed]
- Pivarčiová, L.; Rosskopfová, O.; Galamboš, M.; Rajec, P.; Hudec, P. Sorption of pertechnetate anions on chitosan. J. Radioanal. Nucl. Chem. 2016, 308, 93–98. [Google Scholar] [CrossRef]
- Berry, R.; Haybittle, J. Guidelines on the use of living animals in scientific investigations. Br. J. Radiol. 1985, 58, 1–2. [Google Scholar] [CrossRef]
- Lalatsa, A.; Garrett, N.L.; Ferrarelli, T.; Moger, J.; Schätzlein, A.; Uchegbu, I. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol. Pharm. 2012, 9, 1764–1774. [Google Scholar] [CrossRef]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lai, W.; Wong, W. Property-Tuneable Microgels Fabricated by Using Flow-Focusing Microfluidic Geometry for Bioactive Agent Delivery. Pharmaceutics 2021, 13, 787. [Google Scholar] [CrossRef]
- Rehman, M.; Raza, A.; Khan, J. Laser Responsive Cisplatin-Gold Nano-Assembly Synergizes the Effect of Cisplatin with Compliance. J. Pharm. Sci. 2021, 110, 1749–1760. [Google Scholar] [CrossRef]
- Wilson, A.; Jin, L.; Garcia, A.; Da Silva, J.; Houle, S. An admonition when measuring the lipophilicity of radiotracers using counting techniques. Appl. Radiat. Isot. 2001, 54, 203–208. [Google Scholar] [CrossRef]
- Mosayebnia, M.; Hajiramezanali, M.; Shahhosseini, S.; Bozorgi, A.H.; Kobarfard, F.; Rezaeianpour, S. Docking, synthesis, in-vitro evaluation, and optimization of reaction conditions for direct radiolabeling of CGPRPPC with technetium-99m through the GAGG sequence. Nucl. Med. Commun. 2018, 39, 976–982. [Google Scholar] [CrossRef]
- Boyanton, B.; Blick, K. Stability studies of twenty-four analytes in human plasma and serum. Clin. Chem. 2002, 48, 2242–2247. [Google Scholar] [CrossRef] [PubMed]
- Obireddy, S.; Lai, W. Multi-Component Hydrogel Beads Incorporated with Reduced Graphene Oxide for pH-Responsive and Controlled Co-Delivery of Multiple Agents. Pharmaceutics 2021, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Zhu, L.; Liu, W.; Jiang, L. Programming an Orthogonal Self-Assembling Protein Cascade Based on Reactive Peptide–Protein Pairs for In Vitro Enzymatic Trehalose Production. J. Agric. Food Chem. 2022, 70, 4690–4700. [Google Scholar] [CrossRef]
- Merrill, J.; Krajewski, K.; Yuan, H.; Frank, J.; Lalush, D.; Patterson, C.; Veleva, A.N. Data on biodistribution and radiation absorbed dose profile of a novel 64Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature. Data Br. 2016, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Pirdamooie, S.; Shanei, A.; Moslehi, M. Comparison of the Absorbed Dose for 99mTc-Diethylenetriaminepentaacetic Acid and 99mTc-Ethylenedicysteine Radiopharmaceuticals using Medical Internal Radiation Dosimetry. J. Med. Signals Sens. 2015, 5, 171. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Moghimi, S.; Muir, I.; Illum, L.; Davis, S.; Kolb-Bachofen, V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim. Biophys. Acta 1993, 1179, 157–165. [Google Scholar] [CrossRef]
- Baratta, J.; Ngo, A.; Lopez, B.; Kasabwalla, N.; Longmuir, K.; Robertson, R. Cellular organization of normal mouse liver: A histological, quantitative immunocytochemical, and fine structural analysis. Histochem. Cell Biol. 2009, 131, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Van Til, N.P.; Markusic, D.M.; van der Rijt, R.; Kunne, C.; Hiralall, J.K.; Vreeling, H.; Frederiks, W.M.; Oude-Elferink, R.P.; Seppen, J. Kupffer cells and not liver sinusoidal endothelial cells prevent lentiviral transduction of hepatocytes. Mol. Ther. 2005, 11, 26–34. [Google Scholar] [CrossRef]
- Ohata, M.; Ito, T. Experimental study on the fine structure of chicken liver parenchyme with special references to extrasinusoidal macrophages and sinusoidal blood cells. Part 2. Sinusoidal blood cells in normal and India ink perfused livers. Arch. Histol. Jpn. 1986, 49, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, A.; Gemmell, A.; Thurecht, K. Utilising polymers to understand diseases: Advanced molecular imaging agents. Polym. Chem. 2015, 6, 868. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998. [Google Scholar] [CrossRef] [PubMed]
- Polyák, A.; Hajdu, I.; Bodnár, M.; Dabasi, G.; Jóba, R.P.; Borbély, J.; Balogh, L. Folate receptor targeted self-assembled chitosan-based nanoparticles for SPECT/CT imaging. Int. J. Pharm. 2014, 474, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Helal-Neto, E.; Matos, A.P.d.S.; Jafari, A.; Kozempel, J.; Silva, Y.J.A.; Serrano-Larrea, C.; Junior, S.A.; Ricci-Junior, E.; Alexis, F.; et al. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020, 27, 1544–1561. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, C.; Wu, L.; Bai, X.; Zhai, S. Cytotoxicity-Related Bioeffects Induced by Nanoparticles: The Role of Surface Chemistry. Front. Bioeng. Biotechnol. 2019, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Ha-Kawa, S.; Kojima, M.; Suga, Y.; Kurokawa, H.; Itagaki, Y.; Tanaka, Y. Dose estimation of Tc-99m-DTPA-galactosyl-human serum albumin (Tc-99m-GSA) in the blood with nonlinear regression method. Kaku Igaku 1991, 28, 425–428. [Google Scholar]
- Gill, M.; Menon, J.; Jarman, P.; Owen, J.; Skaripa-Koukelli, I.; Able, S.; Thomas, J.A.; Carlisle, R.; Vallis, K.A. 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. Nanoscale 2018, 10, 10596–10608. [Google Scholar] [CrossRef] [Green Version]
- Fahr, A.; Liu, X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 2007, 4, 403–416. [Google Scholar] [CrossRef]
- Liu, S.; Chakraborty, S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans. 2011, 40, 6077–6086. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Zhang, D.; Liu, C.; Chen, G.; Zhuang, R. A Novel Copolymer-Based Functional SPECT/MR Imaging Agent for Asialoglycoprotein Receptor Targeting. Mol. Imaging 2016, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kwon, A.H.; Inoue, T.; Ha-Kawa, S.K. Characterization of the asialoglycoprotein receptor under hypoxic conditions in primary cultured rat hepatocytes. J. Nucl. Med. Soc. Nucl. Med. 2005, 46, 321–325. [Google Scholar]
- Yang, X.; Zhang, X.; Liu, Y. Asialoglycoprotein receptor-targeted radiopharmaceuticals for measurement of liver function. Curr. Med. Chem. 2014, 21, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Singh, A.K.; Sharma, R.K.; Maitra, A.N. Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: Interference by colloidal tin oxide particles. Int. J. Pharm. 2005, 289, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, S.; Silindir, M. Nanoparticulate Contrast Agents for CT, SPECT and PET Imaging. In Frontiers in Nanobiomedical Research: Handbook of Nanobiomedical Research; World Scientific Publishing: Singapore, 2014; pp. 47–76. [Google Scholar] [CrossRef]
- Santos, J.; Mansur, A.; Mansur, H. One-step biofunctionalization of quantum dots with chitosan and N-palmitoyl chitosan for potential biomedical applications. Molecules 2013, 18, 6550–6572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosula, S.; Killeen, R.; Osborne, J. Altered Biodistribution of Radiopharmaceuticals: Role of Radiochemical/Pharmaceutical Purity, Physiological, and Pharmacologic Factors. Semin. Nucl. Med. 2010, 40, 220–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewersdorff, T.; Gruber, A.; Eravci, M.; Dumbani, M.; Klinger, D.; Haase, A. Amphiphilic nanogels: Influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int. J. Nanomed. 2019, 14, 7861–7878. [Google Scholar] [CrossRef] [Green Version]
- Tommy, C.; Iseult, L.; Stina, L.; Tord, B.; Eva, T.; Hanna, N. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Papini, E.; Tavano, R.; Mancin, F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front. Immunol. 2020, 11, 567365. [Google Scholar] [CrossRef]
- Ogawara, K.; Furumoto, K.; Nagayama, S.; Minato, K.; Higaki, K.; Kai, T.; Kimura, T. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: Implications for rational design of nanoparticles. J. Control. Release 2004, 100, 451–455. [Google Scholar] [CrossRef]
- Mariam, J.; Sivakami, S.; Dongre, P.M. Albumin corona on nanoparticles—A strategic approach in drug delivery. Drug Deliv. 2016, 23, 2668–2676. [Google Scholar] [CrossRef] [Green Version]
- Göppert, T.; Müller, R. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005, 302, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.; Lalatsa, A.; Dea-Ayuela, M.; Bilbao-Ramos, P.; Garrett, N.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schätzlein, A.G.; et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm. 2015, 12, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.; Ho, Y.; Chen, Y.; Peng, S.; Ke, C.; Chen, K.; Mi, F.-L.; Sung, H.-W. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J. Control. Release 2010, 146, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.N. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imaging Biol. 2003, 5, 376–389. [Google Scholar] [CrossRef]
- Yang, W.; Mou, T.; Shao, G.; Wang, F.; Zhang, X.; Liu, B. Copolymer-based hepatocyte asialoglycoprotein receptor targeting agent for SPECT. J. Nucl. Med. 2011, 52, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Souris, J.; Lee, C.; Cheng, S.; Chen, C.; Yang, C.; Ho, J.; Lo, L. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010, 31, 5564–5574. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tang, Z.; Zhu, G.; Cheng, Q.; Zhang, W.; Li, H.; Fu, W.; Lu, Q.-P. JNK signaling is required for the MIP-1α-associated regulation of Kupffer cells in the heat stroke response. Mol. Med. Rep. 2017, 16, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Jeong, H.; Kim, S.; Sohn, M.; Nah, J.; Bom, H.; Park, I.-K.; Cho, C. Asialoglycoprotein-receptor-targeted hepatocyte imaging using 99mTc galactosylated chitosan. Nucl. Med. Biol. 2006, 33, 529–534. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, C.; Wang, X.; Wang, W.; Huang, W.; Cha, R.; Wang, C.-H.; Yuan, Z.; Liu, M.; Wan, H.-Y.; et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010, 31, 4748–4756. [Google Scholar] [CrossRef]
QxPyGC Polymer | Molecular Weight of GCPQs (kDa) a | Mole Percent Palmitoyl Group (%) b | Mole Percent Quaternary Ammonium Group (%) c | CMC (gL−1/µM) d | QPR | Zeta Potential (mV) | Hydro-Dynamic Size (nm) | PDI | Surface Contact Angle (SCA) |
---|---|---|---|---|---|---|---|---|---|
Q9P35GC | 14 ± 1.2 | 35 | 9 | 0.13 ± 0.03 | 0.26 | 2.6 ± 1 | 75 ± 2 | 0.28 ± 0.02 | 59 ± 5 |
Q13P15GC | 12 ± 1.6 | 15 | 13 | 0.15 ± 0.04 | 0.86 | 2.4 ± 0.5 | 80 ± 1 | 0.42 ± 0.12 | 43 ± 5 |
Q20P15GC | 12 ± 1.1 | 15 | 20 | 0.23 ± 0.02 | 1.33 | 3.1 ± 2 | 125 ± 2 | 0.39 ± 0.07 | 41 ± 5 |
0–0.5 h | 0.5–1 h | 1–2 h | 2–4 h | 4–24 h | 0–24 h | |
---|---|---|---|---|---|---|
Heart | 1.4 ± 0.06 | 2.7 ± 0.10 | 4.5 ± 0.2 | 5.9 ± 0.2 | 29 ± 1.1 | 43 ± 1.7 |
Kidney | 2.3 ± 0.1 | 4.4 ± 0.2 | 6.8 ± 0.4 | 8.5 ± 0.4 | 39 ± 2 | 60 ± 3.2 |
Bladder | 3.3 ± 0.1 | 5.7 ± 0.2 | 9.7 ± 0.7 | 19 ± 1.3 | 125 ± 8.6 | 158 ± 10.9 |
Lungs | 0.6 ± 0.02 | 0.9 ± 0.03 | 1.5 ± 0.05 | 2.4 ± 0.08 | 14 ± 0.5 | 19 ± 0.7 |
Liver | 6.8 ± 0.9 | 12.2 ± 1.7 | 17.3 ± 2.4 | 25 ± 3.4 | 173 ± 23.9 | 234 ±. 32.4 |
Spleen | 2.1 ± 0.1 | 3.7 ± 0.3 | 5.9 ± 0.4 | 9.7 ± 0.7 | 67 ± 4.9 | 88 ± 6.5 |
GIT | 0.1 ± 0.01 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.54 ± 0.04 | 0.73 ± 0.05 |
2 T Model | 1 T Model | Multilinear Analysis (MA2) | |||||||
---|---|---|---|---|---|---|---|---|---|
VT (ml/ccm) (Mean ± SEM) | % SE (Mean ± SEM) | AIC (Mean ± SEM) | VT (mL/ccm) (Mean ± SEM) | % SE (Mean ± SEM) | AIC (Mean ± SEM) | VT (mL/ccm) (Mean ± SEM) | AIC (Mean ± SEM) | R2 | |
Liver | 12.66 ± 0.03 | 1.4 ± 0.1 | 66 ± 0.23 | 12.1 ± 0.05 | 16.4 ± 0.28 | 69 ± 0.5 | 12.42 ± 0.01 | 17 ± 4.4 | 0.97 |
Lungs | 1.08 ± 0.06 | 2.8 ± 0.1 | 382.6 ± 0.54 | 1.09 ± 0.09 | 4.99 ± 0.03 | 386 ± 12.2 | 5.07 ± 0.6 | 209 ± 3.9 | 0.86 |
Kidney | 8.3 ± 0.1 | 1 ± 0.2 | 39.3 ± 0.2 | 8.9 ± 0.1 | 1.9 ± 0.01 | 7.1 ± 0.17 | 21.5 ± 2.05 | 12 ± 0.5 | 0.664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zia, N.; Iqbal, Z.; Raza, A.; Zia, A.; Shafique, R.; Andleeb, S.; Walker, G.C. Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution. Nanomaterials 2022, 12, 2198. https://doi.org/10.3390/nano12132198
Zia N, Iqbal Z, Raza A, Zia A, Shafique R, Andleeb S, Walker GC. Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution. Nanomaterials. 2022; 12(13):2198. https://doi.org/10.3390/nano12132198
Chicago/Turabian StyleZia, Nashmia, Zafar Iqbal, Abida Raza, Aadarash Zia, Rabia Shafique, Saiqa Andleeb, and Gilbert C. Walker. 2022. "Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution" Nanomaterials 12, no. 13: 2198. https://doi.org/10.3390/nano12132198
APA StyleZia, N., Iqbal, Z., Raza, A., Zia, A., Shafique, R., Andleeb, S., & Walker, G. C. (2022). Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution. Nanomaterials, 12(13), 2198. https://doi.org/10.3390/nano12132198