Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of AA-CPDs
2.3. Apparatus and Characterization
3. Results and Discussion
3.1. Characterization of AA-CPDs
3.2. Fluorescence of AA-CPDs
3.3. Phosphorescence of AA-CPDs
3.4. RTP Mechanism of AA-CPDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, D.; Zhang, H.; Wu, X.; Tang, P.; Qian, M.; Wang, K.; Qi, P.H. Matrix-free and highly efficient room-temperature phosphorescence carbon dots towards information encryption and decryption. Chem.-Asian J. 2020, 15, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, S.; Guo, J.Q.; Kong, J.T.; Song, J.; Kang, Z.H.; Qu, J.L. The design of room-temperature-phosphorescent carbon dots and their application as a security ink. J. Mater. Chem. C 2019, 7, 10605–10612. [Google Scholar] [CrossRef]
- Zhao, F.F.; Zhang, T.Y.; Liu, Q.; Lü, C.L. Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications. Sens. Actuators B 2019, 304, 127344. [Google Scholar] [CrossRef]
- Miao, W.F.; Zou, W.S.; Zhao, Q.C.; Wang, Y.Q.; Chen, X.; Wu, S.B.; Liu, Z.M.; Xu, T.W. Coupling room-temperature phosphorescence carbon dots onto active layer for highly efficient photodynamic antibacterial chemotherapy and enhanced membrane properties. J. Membr. Sci. 2021, 639, 119754. [Google Scholar] [CrossRef]
- Zhang, G.; Palmer, G.M.; Dewhirst, M.W.; Fraser, C.L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 2009, 8, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hosaka, M.; Yoshihara, T.; Negish, K.; Iida, Y.; Tobita, S.; Takeuchi, T. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res. 2010, 70, 4490–4498. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, Y.; He, Y.; Xu, X.; Lei, B.; Zhang, H.; Zhuang, J.; Hu, C.; Liu, Y. Anchoring carbon nanodots onto nanosilica for phosphorescence enhancement and delayed fluorescence nascence in solid and liquid states. Small 2020, 16, 2005228. [Google Scholar] [CrossRef]
- Chen, K.C.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111. [Google Scholar]
- Gou, H.; Liu, Y.; Zhang, G.; Liao, Q.; Huang, X.; Ning, F.; Ke, C.; Meng, Z.; Xi, K. Lifetime-tunable room-temperature phosphorescence of polyaniline carbon dots in adjustable polymer matrices. Nanoscale 2019, 11, 18311–18319. [Google Scholar]
- Li, Q.; Zhou, M.; Yang, Q.; Wu, Q.; Shi, J.; Gong, A.; Yang, M. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221–8227. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, M.; Yang, M.; Yang, Q.; Zhang, Z.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 2018, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, H.; Jiao, Y.; Lu, W.; Liu, Y.; Han, H.; Gong, X.; Shuang, S.; Dong, C. Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 2019, 31, 7979–7986. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, D.; Chen, X.; Wang, F.; Song, H.; Shen, D. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, F.; Lu, Y.; Zhong, Y.; Wang, S.; Xu, M.; Ji, X.; Su, Y.; Liao, L.; He, Y. Large-scale green synthesis of fluorescent carbon nanodots and their use in optics applications. Adv. Opt. Mater. 2015, 3, 103–111. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhou, L.; Yu, H.M.; Tang, X.D.; Xing, C.; Nie, G.C.; Akafzade, H.; Wang, S.Y.; Chen, W. Exploration of room-temperature phosphorescence and new mechanism on carbon dots in a polyacrylamide platform and their applications for anti-counterfeiting and information encryption. Adv. Opt. Mater. 2022, 202200678. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, J.; Li, W.; Zhang, L.; Yue, D. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications. J. Mater. Chem. C 2016, 4, 10146–10153. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Zhou, Z.; Zhang, H.; Zhang, X.; Zhuang, J.; Liu, Y.; Lei, B.; Hu, C. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem. 2019, 58, 7278–7283. [Google Scholar] [CrossRef]
- Bai, L.Q.; Xue, N.; Wang, X.R.; Shi, W.Y.; Lu, C. Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements. Nanoscale 2017, 9, 6658–6664. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, K.; Wang, Y.; Wang, S.; Li, Z.; Lin, H. Visible-light-excited room temperature phosphorescent carbon dots. Nanomaterials 2020, 10, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, K.; Wang, Y.; Cai, C.; Lin, H. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783. [Google Scholar] [CrossRef]
- Long, P.; Feng, Y.; Cao, C.; Li, Y.; Han, J.; Li, S.; Peng, C.; Li, Z.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen Codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791. [Google Scholar] [CrossRef]
- Gao, Y.; Han, H.; Lu, W.; Jiao, Y.; Liu, Y.; Gong, X.; Xian, M.; Shuang, S.; Dong, C. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots. Langmuir 2018, 34, 12845–12852. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Su, Q.; Yang, X. Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale 2019, 11, 16036–16042. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W.W.; Li, L.; An, Z.; et al. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater. 2017, 29, 1701244. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Z.; Yuan, Y. Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 2017, 5, 3794–3809. [Google Scholar] [CrossRef]
- Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar]
- Wei, X.; Yang, J.; Hu, L.; Cao, Y.; Lai, J.; Cao, F.; Gu, J.; Cao, X. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications. J. Mater. Chem. C 2021, 9, 4425–4443. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Zhang, S.; Zeng, Q.; Tao, S.; Tian, X.; Li, Y.; Yang, B. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength. ACS Appl. Mater. Interfaces 2020, 12, 38593–38601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. [Google Scholar] [CrossRef]
- An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, M.; Song, Y.; Wang, H.; Liu, C.; Fu, Y.; Huang, H.; Liu, Y.; Kang, Z. Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J. Mater. Chem. B 2018, 6, 5708–5717. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Y.; Liu, A.; Zhu, Y.; Chen, S.; Wei, D.; Sun, J.; Guo, Z.; Fan, H. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem. Eng. J. 2020, 388, 124199. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Immobilization of heteroatom-doped carbon dots onto nonpolar plastics for antifogging, antioxidant, and food monitoring applications. Langmuir 2021, 37, 3508–3520. [Google Scholar] [CrossRef]
- Guo, D.; Wei, H.F.; Song, R.B.; Fu, J.; Lu, X.; Jelinek, R.; Min, Q.; Zhang, J.R.; Zhang, Q.; Zhu, J.J. N,S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy 2019, 63, 103875. [Google Scholar] [CrossRef]
- Aswathy, A.O.; Anju, M.S.; Jayakrishna, J.; Vijila, N.S.; Anjali Devi, J.S.; Anjitha, B.; George, S. Investigation of heavy atom effect on fluorescence of carbon dots: NCDs and S, N-CDs. J. Fluoresc. 2020, 30, 1337–1344. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, Y.; Chen, T.; Xia, Q.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658–12667. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, L.; Lu, J.; Xu, C.; Cai, C.; Lin, H. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem. 2016, 55, 7231–7235. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Maruthapandi, M.; Das, P.; Luong, J.; Gedanken, A. Green synthesis of multifunctional carbon dots with antibacterial activities. Nanomaterials 2011, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Anappara, A.A. Long life–time room–temperature phosphorescence of carbon dots in aluminum sulfate. ChemistrySelect 2017, 2, 4058–4062. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kong, W.Q.; Li, H.; Liu, J.; Yang, M.M.; Huang, H.; Liu, Y.; Wang, Z.Y.; Wang, Z.Q.; Sham, T.K.; et al. Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer. ACS Appl. Mater. Interfaces 2015, 7, 27324–27330. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, P.J.; Jun-Ray, M.; Alexia, M.; Alexandre, P.; Valeria, Q.; Isabelle, M.; Rafik, N. Effects of polydopamine-passivation on the optical properties of carbon dots and its potential usein vivo. Phys. Chem. Chem. Phys. 2020, 22, 16595–16605. [Google Scholar]
- Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K.; Reckmeier, C.; Rogach, A.; Stolarczyk, J.; Urban, A.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, X.; Wang, F.; Zhang, X.; Zhao, D.; Shen, D. Environment-dependent photon emission from solid state carbon dots and its mechanism. Nanoscale 2014, 6, 10388–10393. [Google Scholar] [CrossRef]
- Liu, B.; Chu, B.; Wang, Y.L.; Hu, L.F.; Hu, S.; Zhang, X.H. Carbon dioxide derived carbonized polymer dots for multicolor light-emitting diodes. Green Chem. 2021, 23, 422–429. [Google Scholar] [CrossRef]
- Tao, S.; Lu, S.; Geng, Y.; Zhu, S.; Redfern, A.T.; Song, Y.; Feng, T.; Xu, W.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem. 2018, 57, 2393–2398. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, K.; Feng, T.; Tao, S.; Han, M.; Li, R.; Wang, C.; Wang, Y.; Yang, B. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. J. Mater. Chem. C 2019, 7, 8680–8687. [Google Scholar] [CrossRef]
- Arshad, F.; Sk, M.P. Aggregation-induced red shift in N,S-doped chiral carbon dot emissions for moisture sensing. New J. Chem. 2019, 43, 13240–13248. [Google Scholar] [CrossRef]
- Mai, X.D.; Phan, Y.T.H.; Nguyen, V.Q.; Manolakos, D.E. Excitation-independent emission of carbon quantum dot solids. Adv. Mater. Sci. Eng. 2020, 2020, 9643168. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.; Wu, X.; Ma, C.; Luo, S.; Xu, M.; Li, W.; Liu, S. Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta 2020, 210, 120649. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. 2018, 57, 6216–6220. [Google Scholar] [CrossRef]
- Feng, T.; Zhu, S.; Zeng, Q.; Lu, S.; Tao, S.; Liu, J.; Yang, B. Supramolecular cross-link-regulated emission and related applications in polymer carbon dots. ACS Appl. Mater. Interfaces 2018, 10, 12262–12277. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Hu, C.; Zhang, H.; Lei, B.; Liu, Y. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. J. Mater. Chem. C 2017, 5, 6243–6250. [Google Scholar] [CrossRef]
- Tan, J.; Zou, R.; Zhang, J.; Li, W.; Zhang, L.; Yue, D. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 2016, 8, 4742–4747. [Google Scholar] [CrossRef]
- Spychaj, T.; Hamielec, A.E. High-temperature continuous bulk copolymerization of styrene and acrylic acid: Thermal behavior of the reactants. J. Appl. Polymer Sci. 1991, 42, 2111–2119. [Google Scholar] [CrossRef]
- Fujita, M.; Izato, Y.; Iizuka, Y.; Miyake, A. Thermal hazard evaluation of runaway polymerization of acrylic acid. Process Saf. Environ. Prot. 2019, 129, 339–347. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Shao, J.; Yang, B. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. J. Polymer Sci. Part A Polymer Chem. 2017, 55, 610–615. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Yu, H.; Bui, B.; Zhang, W.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Exploration of Nitrogen-doped Grape Peels Carbon Dots for Baicalin Detection. Mater. Today Phys. 2022, 22, 100576. [Google Scholar]
- Tang, X.; Yu, H.; Bui, B.; Wang, L.; Xing, C.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, H.; Chudal, L.; Pandey, N.; Amador, E.; Bui, B.; Wang, L.; Ma, X.; Deng, S.; Zhu, X.; et al. Striking Luminescence Phenomena of Carbon Dots and Their Applications as a Double Ratiometric Fluorescence Probes for H2S Detection. Mater. Today Phys. 2021, 17, 100328. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W. ZnS:Cu,Co Water Soluble Afterglow Nanoparticles—Synthesis, Luminescence and Potential Applications. Nanotechnology 2010, 21, 385604. [Google Scholar] [CrossRef]
- Chu, X.; Li, K.; Guo, H.; Zheng, H.; Shuda, S.; Wang, X.; Zhang, J.; Chen, W.; Zhang, Y. Exploration of Graphitic-C3N4 Quantum Dots for Microwave-Induced Photodynamic Therapy. ACS Biomater. Sci. Eng. 2017, 3, 1836–1844. [Google Scholar] [CrossRef]
- Pandey, N.; Xiong, W.; Wang, L.; Chen, W.; Bui, B.; Yang, J.; Amador, E.; Chen, M.; Xing, C.; Athavale, A.; et al. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater. 2021, 7, 112–125. [Google Scholar] [CrossRef]
- Chen, W.; Joly, A.; Roark, J. Photostimulated luminescence and dynamics of AgI and Ag nanoclusters in zeolites. Phys. Rev. B 2002, 65, 245404. [Google Scholar] [CrossRef]
- Morgan, N.; English, S.; Chen, W.; Chernomordik, V.; Russo, A.; Smith, P.; Gandjbakhche, A. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad. Radiol. 2005, 12, 313–323. [Google Scholar] [CrossRef]
- Wang, S.; Westcott, S.; Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 2002, 106, 11203–11209. [Google Scholar] [CrossRef]
RTP Carbon Dots Materials | λEm/nm | Lifetime/ms | Decay Time to Naked Eyes/s | Reference |
---|---|---|---|---|
RTP C-dots | 535 | 750 | 9 | [1] |
NCDs | 519 | 459 | 6 | [2] |
AA-CDs | 585 | 240.8 | 5 | [21] |
F-CDs | 540 | 1390 | 10 | [22] |
P-CDs | 525 | 1140 | 9 | [25] |
PCDs Ⅰ-1 | 494 | 658.11 | 7 | [37] |
PCDs Ⅰ-2 | -- | 379.22 | 1.4 | [37] |
PCDs Ⅰ-3 | -- | 188.58 | 0.2 | [37] |
NCDs | 515 | 747 | 2 | [24] |
AN-CPDs-150 | 485 | 373.5 | -- | [31] |
AN-CPDs-180 | 490 | 436.1 | -- | [31] |
AN-CPDs-200 | 494 | 466.5 | -- | [31] |
AN-CPDs-230 | 500 | 257.8 | -- | [31] |
AN-CPDs-250 | 518 | 174.8 | -- | [31] |
AN-CPDs-280 | 532 | 117.2 | -- | [31] |
AN-CPDs-300 | 558 | 61.4 | -- | [31] |
AA-CPDs | 476 | 412.03 | 10 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yu, H.; AL-Zubi, A.; Zhu, X.; Nie, G.; Wang, S.; Chen, W. Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials 2022, 12, 2210. https://doi.org/10.3390/nano12132210
Wang H, Yu H, AL-Zubi A, Zhu X, Nie G, Wang S, Chen W. Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials. 2022; 12(13):2210. https://doi.org/10.3390/nano12132210
Chicago/Turabian StyleWang, Huiyong, Hongmei Yu, Ayman AL-Zubi, Xiuhui Zhu, Guochao Nie, Shaoyan Wang, and Wei Chen. 2022. "Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes" Nanomaterials 12, no. 13: 2210. https://doi.org/10.3390/nano12132210
APA StyleWang, H., Yu, H., AL-Zubi, A., Zhu, X., Nie, G., Wang, S., & Chen, W. (2022). Self-Matrix N-Doped Room Temperature Phosphorescent Carbon Dots Triggered by Visible and Ultraviolet Light Dual Modes. Nanomaterials, 12(13), 2210. https://doi.org/10.3390/nano12132210