Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijcker, R.; Van der Wijk, M.; Artieres, O.; Dortland, G.; Lostumbo, J. Geotextile Enabled Smart Monitoring Solutions for Safe and Effective Management of Tailing and Waste Sites. Two Case Studies: Volgermeerpolder (The Netherlands) and Suncor (Canada). Proc. Tailing Mine Waste 2011, 1–8. [Google Scholar] [CrossRef]
- Sharp, D. Printed composite electrodes for in-situ wound pH monitoring. Biosens. Bioelectron. 2013, 50, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Pasche, S.; Schyrr, B.; Wenger, B.; Scolan, E.; Ischer, R.; Voirin, G. Smart Textiles with Biosensing Capabilities. Adv. Sci. Technol. 2013, 80, 129–135. [Google Scholar]
- Gerhardt, L.-C.; Lottenbach, R.; Rossi, R.M.; Derler, S. Tribological Investigation of a Functional Medical Textile with Lubricating Drug-Delivery Finishing. Colloids Surf. B Biointerfaces 2013, 108, 103–109. [Google Scholar] [CrossRef]
- Gniotek, K.; Frydrysiak, M.; Zieba, J.; Tokarska, M.; Stempien, Z. Innovative textile eletrodes for muscles electrostimulation. In Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 30–31 May 2011; pp. 1–6. [Google Scholar]
- Cherenak, K.; van Peterson, L. Smart Textiles: Challenges and Opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Esteve, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef]
- Keller, T.; Kuhn, A. Electrodes for Transcutaneous (Surface) Electrical Stimulation. J. Autom. Control. 2008, 18, 35–45. [Google Scholar] [CrossRef]
- Li, L.; Au, W.M.; Li, Y.; Wan, K.M.; Wan, S.H.; Wong, K.S. Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique. Text. Res. J. 2010, 80, 279–286. [Google Scholar] [CrossRef]
- Zhao, D.C.; Zhang, L.S. Biological Effects of Electromagnetic Radiation and Protection. Appl. Mech. Mater. 2014, 513–517, 3313–3316. [Google Scholar]
- Bica, I. Nanoparticle production by plasma. Mater. Sci. Eng. B 1999, 68, 5–9. [Google Scholar] [CrossRef]
- Bica, I. Plasma device for magnetic nanoparticles production. J. Magn. Magn. Mater. 1999, 201, 45–48. [Google Scholar] [CrossRef]
- Bica, I.; Muscutariu, I. Preparation of colloidal magnetic particles in a thermal plasma. Magnetohydrodynamics 1997, 30, 104–105. [Google Scholar]
- Vatzulik, B.; Bica, I. Production of magnetizable microparticles from metallurgic slag in argon plasma jet. J. Ind. Eng. Chem. 1999, 15, 423–429. [Google Scholar] [CrossRef]
- Bica, I. Some mechanisms for the formation of octopus-shaped iron micro-particles. J. Magn. Magn. Mater. 2004, 279, 289–298. [Google Scholar] [CrossRef]
- Bica, I. Formation of iron micro-tubes in plasma. J. Magn. Magn. Mater. 2003, 270, 7–14. [Google Scholar] [CrossRef]
- Bica, I. Pore formation in iron micro-spheres by plasma procedure. Mater. Sci. Eng. A 2005, 393, 191–195. [Google Scholar] [CrossRef]
- Bica, I. Iron micro-spheres generation in argon plasma jet. Mater. Sci. Eng. B 2002, 88, 107–109. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M.; Choi, H.J.; Sfirloaga, P. Microwave-assisted synthesis and characterization of iron oxide microfibers. J. Mater. Chem. C 2020, 8, 6159–6167. [Google Scholar] [CrossRef]
- Lu, Q.; Balasoiu, M.; Choi, H.J.; Anitas, E.M.; Bica, I.; Chirigiu, L.M.E. Magneto-dielectric and viscoelastic characteristics of iron oxide microfiber-based magnetoreological suspension. J. Ind. Eng. Chem. 2022, 112, 58–66. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M.; Chirigiu, L. Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers. Nanomaterials 2020, 10, 2060. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M. Electrical devices based on hybrid membranes with mechanically and magnetically controllable, resistive, capacitive and piezoelectric properties. Smart Mater. Struct. 2022, 31, 045001. [Google Scholar] [CrossRef]
- Bica, I.; Balasoiu, M.; Sfirloaga, P. Effects of electric and magnetic fields on dielectric and elastic properties of membranes composed of cotton fabric and carbonyl iron microparticles. Results Phys. 2022, 35, 105332. [Google Scholar] [CrossRef]
- Bica, I.; Iacobescu, G.E. Magneto-Dielectric Effects in Polyurethane Sponge Modified with Carbonyl Iron for Applications in Low-Cost Magnetic Sensors. Polymers 2022, 14, 2062. [Google Scholar] [CrossRef] [PubMed]
- Bica, I.; Anitas, E.M.; Chirigiu, L.; Daniela, C.; Chirigiu, L.M.E. Hybrid magnetorheological suspension: Effects of magnetic field on the relative dielectric permittivity and viscosity. Colloid Polym. Sci. 2018, 296, 1373–1378. [Google Scholar] [CrossRef]
- Ablon, G. Phototherapy with Light Emitting Diodes: Treating a Broad Range of Medical and Aesthetic Conditions in Dermatology. J. Clin. Aesthetic Dermatol. 2018, 11, 21–27. [Google Scholar]
- Jagdeo, J.; Austin, E.; Mamalis, A.; Wong, C.; Ho, D.; Siegel, D.M. Light-emitting diodes in dermatology: A systematic review of randomized controlled trials. Lasers Surg. Med. 2018, 50, 613–628. [Google Scholar] [CrossRef]
- Kokaadam, B.; Sanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2015, 57, 2889–2895. [Google Scholar] [CrossRef]
- Davies, A.M.; Wainberg, U.; Palti, Y. Tumor treating fields: A new frontier in cancer therapy. Ann. N. Y. Acad. Sci. 2013, 1291, 86–95. [Google Scholar] [CrossRef]
- Kirson, E.D.; Gurvich, Z.; Schneiderman, R.; Dekel, E.; Itzhaki, A.; Wasserman, Y.; Schatzberger, R.; Palti, Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004, 64, 3288–3295. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Bule, M.L.; Trillo, M.A.; Cid, M.A.; Leal, J.; Ubeda, A. In vitro exposure to 0.57-MHz electric currents exerts cytostatic effects in HepG2 human hepatocarcinoma cells. Int. J. Oncol. 2007, 30, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Salzberg, M.; Kirson, E.; Palti, Y.; Rochlitz, C. A pilot study with very low-intensity, intermediate-frequency electric fields in patients with locally advanced and/or metastatic solid tumors. Onkologie 2008, 31, 362–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Qian, Y.; Yang, Y.; Wu, W.; Xie, J.; Wei, D. Effects of carbonyl iron powder on iron deficiencyanemia and its subchronic toxicity. J. Food Drug Anal. 2016, 24, 46–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, A.; Chohan, K.; Chohan, A.; Chakravarti, A. Role of honey after tonsillectomy: A systematic review and meta-analysis of randomised controlled trials. Clin. Otolaryngol. 2017, 42, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Krishnana, K.T.; Sallehb, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Bica, I.; Anitas, E.M. Light transmission, magnetodielectric and magnetoresistive effects in membranes based on hybrid magnetorheological suspensions in a static magnetic field superimposed on a low/medium frequency electric field. J. Magn. Magn. Mater. 2020, 511, 166975. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M.; Averis, L.M.E. Magnetic Control of Light Transmission and of Electrical Conductivity in (Hybrid) Magnetorheological Suspensions Based on Bioactive Components. Rom. J. Phys. 2020, 68, 604. [Google Scholar]
- Bica, I.; Anitas, E.M. Magnetic field intensity effect on electrical conductivity of magnetorheological biosuspensions based on honey, turmeric and carbonyl iron. J. Ind. Eng. Chem. 2018, 64, 276–283. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M. Magnetodielectric effects in membranes based on magnetorheological bio-suspensions. Mater. Des. 2018, 155, 317–324. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M. Magneto-active fabrics based on glucose and carbonyl iron: Effects of glucose crystallization kinetics and magnetic field on the electrical conductivity. J. Magn. Magn. Mater. 2020, 495, 165883. [Google Scholar] [CrossRef]
- Bica, I.; Anitas, E.M.; Lu, Q.; Choi, H.J. Effect of magnetic field intensity and γ-Fe2O3 nanoparticle additive on electrical conductivity and viscosity of magnetorheological carbonyl iron suspension-based membranes. Smart Mater. Struct. 2018, 27, 095021. [Google Scholar] [CrossRef]
- Pascu, G.; Bunoiu, O.M.; Bica, I. Magnetic Field Effects Induced in Electrical Devices Based on Cotton Fiber Composites, Carbonyl Iron Microparticles and Barium Titanate Nanoparticles. Nanomaterials 2022, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Chen, X.; Zhou, H.; Liu, P.; Fu, S. Interfacing MXene Flakes on a Magnetic Fiber Network as a Stretchable, Flexible, Electromagnetic Shielding Fabric. Nanomaterials 2022, 12, 20. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bica, I. Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications. Nanomaterials 2022, 12, 2240. https://doi.org/10.3390/nano12132240
Bica I. Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications. Nanomaterials. 2022; 12(13):2240. https://doi.org/10.3390/nano12132240
Chicago/Turabian StyleBica, Ioan. 2022. "Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications" Nanomaterials 12, no. 13: 2240. https://doi.org/10.3390/nano12132240
APA StyleBica, I. (2022). Composite Materials Based on Polymeric Fibers Doped with Magnetic Nanoparticles: Synthesis, Properties and Applications. Nanomaterials, 12(13), 2240. https://doi.org/10.3390/nano12132240