Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Somay, S. Multiwall carbon nanotube enhance the invisibility effect from radar. Results Phys. 2020, 18, 14. [Google Scholar] [CrossRef]
- Jia, Z.; Zhu, Z.H.; Zeng, C.C.; Zhao, H.; Yuan, Z.F. The effect of yttrium on the microwave absorbing properties of Fe78Si13B9 alloy powders. Chem. Eng. J. 2020, 398, 1–7. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, P.; Zhang, L.; Zhang, L. Novel low-frequency microwave absorber of Sn-Fe-O multiphase compounds combined with Salvia miltiorrhiza Bunge-derived biochar. Powder Technol. 2021, 394, 853–862. [Google Scholar] [CrossRef]
- Liu, X.J.; Duan, Y.P.; Yang, X.; Huang, L.X.; Gao, M.M.; Wang, T.M. Enhancement of magnetic properties in FeCoNiCr0.4Cux high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 2021, 872, 9. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zhou, W.; Luo, F. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co. J. Magn. Magn. Mater. 2015, 393, 445–451. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Guo, Y.; Ali, R.; Tian, W.; Liu, Y.F.; Zhang, L.; Wang, X.; Zhang, L.B.; Yin, L.J.; Su, H.; et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 2020, 828, 154079. [Google Scholar] [CrossRef]
- Zeng, Q.; Xu, D.W.; Chen, P.; Yu, Q.; Xiong, X.H.; Chu, H.R.; Wang, Q. 3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties. J. Mater. Sci. Mater. 2018, 29, 2421–2433. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, Y.Y.; Ren, Z.W.; Wei, X.; Tao, S.P.; Yang, C.Q. Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material. J. Magn. Magn. Mater. 2020, 499, 8. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Ma, L.Y.; Li, R.; Chen, D.; Lu, Y.Y.; Cheng, Y.Y.; Luo, X.X.; Xie, H.; Zhou, W.C. Enhanced heat-resistance property of aluminum-coated carbonyl iron particles as microwave absorption materials. J. Magn. Magn. Mater. 2021, 524, 167681. [Google Scholar] [CrossRef]
- Wang, W.; Guo, J.; Long, C.; Li, W.; Guan, J. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111. [Google Scholar] [CrossRef]
- Bao, S.S.; Song, Z.J.; Mao, R.J.; Li, Y.; Zhang, S.H.; Jiang, Z.Y.; Li, X.A.; Xie, Z.X. Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 2021, 9, 13860–13868. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.Y.; Yang, Y.; Peng, K.S.; Cao, Y.F.; Xu, G.Y.; Zhang, Y.J. High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss. J. Mater. Chem. C 2021, 9, 1936–1944. [Google Scholar] [CrossRef]
- Cheng, J.B.; Yuan, W.J.; Zhang, A.N.; Zhao, H.B.; Wang, Y.Z. Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 2020, 8, 13712–13722. [Google Scholar] [CrossRef]
- Feng, Y.B.; Qiu, T. Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method. J. Alloys Compd. 2012, 513, 455–459. [Google Scholar] [CrossRef]
- Huang, D.; Qiu, T.; Feng, Y.B. Electromagnetic and Microwave Absorbing Properties of Stainless FeCr Alloy. J. Mater. Sci. Eng. 2010, 28, 395–398. [Google Scholar]
- Park, J.H.; Ro, J.C.; Suh, S.J. Fe/Co ratio dependent excellent microwave absorption of FeCo alloys with a wide bandwidth in the high-frequency region. Mater. Res. Bull. 2021, 145, 111513. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Jiang, J.t.; Gong, Y.X.; Zhen, L. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process. J. Magn. Magn. Mater. 2015, 395, 152–158. [Google Scholar] [CrossRef]
- Tian, W.; Li, J.Y.; Liu, Y.F.; Ali, R.; Guo, Y.; Deng, L.J.; Mahmood, N.; Jian, X. Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@Al2O3 Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands. Nano Micro Lett. 2021, 13, 14. [Google Scholar] [CrossRef]
- Huang, W.R.; Zhang, P.H.; Yan, W.J.; Zhou, L.; Xu, H. Microwave absorption capability of microcapsules by coating FeSiAlCr with SiO2. J. Phys. D Appl. Phys. 2012, 45, 4. [Google Scholar] [CrossRef]
- Shao, T.; Ma, H.; Wang, J.; Yan, M.; Qu, S. Ultra-thin and high temperature NiCrAlY alloy metamaterial enhanced radar absorbing coating. J. Alloys Compd. 2020, 832, 154945. [Google Scholar] [CrossRef]
- Zeng, C.C.; Jia, Z.; Zhou, W. Effect of yttrium on the wave absorption properties of Fe95Si1B2P0.5Cu1.5 alloy powders in the S-band and C-band. J. Magn. Magn. Mater. 2021, 538, 168250. [Google Scholar] [CrossRef]
- Saber, M.; Kotan, H.; Koch, C.C.; Scattergood, R.O. Thermal stability of nanocrystalline Fe-Cr alloys with Zr additions. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2012, 556, 664–670. [Google Scholar] [CrossRef]
- Zhou, T.D.; Liang, D.F.; Deng, L.J.; Luan, D.C. Electron Structure and Microwave Absorbing Ability of Flaky FeSiAl Powders. J. Mater. Sci. Technol. 2011, 27, 170–174. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.; Gong, M.; Fu, Q.; Lin, X. Non-isothermal austenitic transformation kinetics in Fe–10Cr–1Co alloy. Appl. Phys. A 2016, 122, 1–10. [Google Scholar] [CrossRef]
- Rastabi, R.A.; Ghasemi, A.; Tavoosi, M.; Sodaee, T. Magnetic characterization of nanocrystalline Fe80−xCrxCo20 (15 ≤ x ≤ 35) alloys during milling and subsequent annealing. J. Magn. Magn. Mater. 2016, 416, 174–180. [Google Scholar] [CrossRef]
- Gao, Q.; Gong, M.; Wang, Y.; Qu, F.; Huang, J. Phase Transformation and Properties of Fe-Cr-Co Alloys with Low Cobalt Content. Mater. Trans. 2015, 56, 1491–1495. [Google Scholar] [CrossRef] [Green Version]
- Engin, C.; Sandoval, L.; Urbassek, H.M. Characterization of Fe potentials with respect to the stability of the bcc and fcc phase. Model. Simul. Mater. Sci. Eng. 2008, 16, 12. [Google Scholar] [CrossRef]
- De, A.K.; Murdock, D.C.; Mataya, M.C.; Speer, J.G.; Matlock, D.K. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr. Mater. 2004, 50, 1445–1449. [Google Scholar] [CrossRef]
- Ni, X.Q.; Kong, D.C.; Wu, W.H.; Zhang, L.; Dong, C.F. Deformation-induced martensitic transformation in 316L stainless steels fabricated by laser powder bed fusion. Mater. Lett. 2021, 302, 4. [Google Scholar] [CrossRef]
- Huang, H.; Ding, J.; McCormick, P. Microstructural evolution of 304 stainless steel during mechanical milling. Mater. Sci. Eng. A 1996, 216, 178–184. [Google Scholar] [CrossRef]
- Ding, J.; Huang, H.; McCormick, P.; Street, R. Magnetic properties of martensite-austenite mixtures in mechanically milled 304 stainless steel. J. Magn. Magn. Mater. 1995, 139, 109–114. [Google Scholar] [CrossRef]
- Delogu, F. A few details of the austenite to martensite phase transformation in 304 stainless steel powders under mechanical processing. Acta Mater. 2011, 59, 2069–2074. [Google Scholar] [CrossRef]
- Enayati, M.H.; Bafandeh, M.R.; Nosohian, S. Ball milling of stainless steel scrap chips to produce nanocrystalline powder. J. Mater. Sci. 2007, 42, 2844–2848. [Google Scholar] [CrossRef]
- Oleszak, D.; Grabias, A.; Pekala, M.; SWiderska-Sroda, A.; Kulik, T. Evolution of structure in austenitic steel powders during ball milling and subsequent sintering. J. Alloys Compd. 2007, 434, 340–343. [Google Scholar] [CrossRef]
- Luo, S.; Wang, H.; Gao, Z.; Wu, Y.; Wang, H. Interaction between high-velocity gas and liquid in gas atomization revealed by a new coupled simulation model. Mater. Des. 2021, 212, 110264. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, Y.F.; Qiao, G.Y.; Lai, Y.F.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Du, H.L.; Zhang, Y.; Yang, Y.C.; et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17−xSix and their composites. Acta Mater. 2018, 145, 331–336. [Google Scholar] [CrossRef]
- Meszaros, I.; Prohaszka, J. Magnetic investigation of the effect of alpha-martensite on the properties of austenitic stainless steel. J. Mater. Process. Technol. 2005, 161, 162–168. [Google Scholar] [CrossRef]
- Etienne, A.; Radiguet, B.; Genevois, C.; Le Breton, J.M.; Valiev, R.; Pareige, P. Thermal stability of ultrafine-grained austenitic stainless steels. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2010, 527, 5805–5810. [Google Scholar] [CrossRef]
- Guo, C.; Tan, S.J.; Shen, S.L.; Wu, S. Heat Treatment on FeCo particles to Enhance the Efficient Microwave Absorption Performance. In Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics (AMME), Xi’an, China, 20–21 January 2018. [Google Scholar]
- Mishra, R.R.; Sharma, A.K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Pt. A Appl. Sci. Manuf. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, W.; Li, R.; Mu, Y.; Qing, Y. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating. J. Alloys Compd. 2015, 637, 10–15. [Google Scholar] [CrossRef]
- Huang, C.; Dong, Q.; Yin, X.; Zhang, R.; Zhang, Y.; Yang, D.a. Antioxidation and electromagnetic properties of Co-coated hollow carbonyl iron particles by electroless plating method. J. Mater. Sci. Mater. 2017, 28, 5037–5043. [Google Scholar] [CrossRef]
- Wang, X.; Gong, R.Z.; Luo, H.; Feng, Z.K. Microwave properties of surface modified Fe-Co-Zr alloy flakes with mechanochemically synthesized polystyrene. J. Alloys Compd. 2009, 480, 761–764. [Google Scholar] [CrossRef]
- Yang, R.-B.; Liang, W.-F. Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 2011, 109, 07A311. [Google Scholar] [CrossRef]
- Zhang, B.S.; Feng, Y.; Xiong, H.; Yang, Y.; Lu, H.X. Microwave-absorbing properties of De-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans. Magn. 2006, 42, 1778–1781. [Google Scholar] [CrossRef]
- Wen, F.; Zuo, W.; Yi, H.; Wang, N.; Qiao, L.; Li, F. Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Phys. B Condens. Matter 2009, 404, 3567–3570. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.Y.; Luo, F.; Su, X.L.; Xu, J.; Wang, J.B.; He, X.H.; Shi, Y.M. Electromagnetic and microwave absorption properties of flaky FeCrAl particles. J. Mater. Sci. Mater. 2017, 28, 6619–6627. [Google Scholar] [CrossRef]
- Snoek, J.L. Dispersion and Absorption in Magnetic Ferrites at Frequencies Above one MC/S. Physica 1948, 14, 207–217. [Google Scholar] [CrossRef]
- Wang, B.L.; Wu, Q.; Fu, Y.G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Han, C.; Zhang, H.; Zhang, D.; Deng, Y.; Shen, J.; Zeng, G. Ultrafine FeNi3 Nanocrystals Embedded in 3D Honeycomb-Like Carbon Matrix for High-Performance Microwave Absorption. Nanomaterials 2020, 10, 598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yao, Y.; Zhou, W.; Liu, Y.; Cao, X.; Zhang, Z. NiMnO3 Anchored on Reduced Graphene Oxide Nanosheets: A New High-Performance Microwave Absorbing Material. Nanomaterials 2022, 12, 1089. [Google Scholar] [CrossRef]
- Li, W.; Wu, T.L.; Wang, W.; Zhai, P.C.; Guan, J.G. Broadband patterned magnetic microwave absorber. J. Appl. Phys. 2014, 116, 044110. [Google Scholar] [CrossRef]
- Fan, X.; Guan, J.G.; Wang, W.; Tong, G.X. Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D Appl. Phys. 2009, 42, 075006. [Google Scholar] [CrossRef]
- Morita, K.; Sano, N.; Seetharaman, S. Thermodynamic Aspects of Process Metallurgy: Introduction to Thermodynamics of Metallurgical Processes. In Treatise on Process Metallurgy; Seetharaman, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 395–397. [Google Scholar] [CrossRef]
- Xia, Z.X.; Zhang, C.; Huang, X.F.; Liu, W.B.; Yang, Z.G. Improve oxidation resistance at high temperature by nanocrystalline surface layer. Sci. Rep. 2015, 5, 13027. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Chen, Z.; Wang, R.; Xiao, H.; Wang, J.; Yang, H.; Shi, Y.; Li, W.; Guan, J. Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption. Nanomaterials 2022, 12, 2263. https://doi.org/10.3390/nano12132263
Fu Z, Chen Z, Wang R, Xiao H, Wang J, Yang H, Shi Y, Li W, Guan J. Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption. Nanomaterials. 2022; 12(13):2263. https://doi.org/10.3390/nano12132263
Chicago/Turabian StyleFu, Ziwen, Zhihong Chen, Rui Wang, Hanyan Xiao, Jun Wang, Hao Yang, Yueting Shi, Wei Li, and Jianguo Guan. 2022. "Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption" Nanomaterials 12, no. 13: 2263. https://doi.org/10.3390/nano12132263
APA StyleFu, Z., Chen, Z., Wang, R., Xiao, H., Wang, J., Yang, H., Shi, Y., Li, W., & Guan, J. (2022). Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption. Nanomaterials, 12(13), 2263. https://doi.org/10.3390/nano12132263