Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures
Abstract
:1. Introduction
2. Theory
2.1. Resolving Ability of the Far-Field Non-Intrusive CLSM
2.2. The Influence of Light Matter Interaction to Optical Nanoscale Mapping
2.3. Nanoscale Mapping of the Local Density of State
3. Experimental Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lian, C.; Vagionas, C.; Alexoudi, T.; Pleros, N.; Youngblood, N.; Ríos, C. Photonic (Computational) Memories: Tunable Nanophotonics for Data Storage and Computing. Nanophotonics 2022, 1–2. [Google Scholar] [CrossRef]
- Meiling, J.; Mingsi, Z.; Xiangping, L.; Yaoyu, C. Research Progress of Super-Resolution Optical Data Storage. Opto-Electron. Eng. 2019, 46, 180649-1. [Google Scholar] [CrossRef]
- Gu, M.; Li, X.; Cao, Y. Optical Storage Arrays: A Perspective for Future Big Data Storage. Light Sci. Appl. 2014, 3, e177. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for Optical Data Storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Tominaga, J.; Nakano, T.; Atoda, N. An Approach for Recording and Readout beyond the Diffraction Limit with an Sb Thin Film. Appl. Phys. Lett. 1998, 73, 2078–2080. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, Z.; Cheng, Y.-B.; Gu, M. High-Capacity Optical Long Data Memory Based on Enhanced Young’s Modulus in Nanoplasmonic Hybrid Glass Composites. Nat. Commun. 2018, 9, 1183. [Google Scholar] [CrossRef] [Green Version]
- Terris, B.D.; Mamin, H.J.; Rugar, D. Near-field Optical Data Storage. Appl. Phys. Lett. 1996, 68, 141–143. [Google Scholar] [CrossRef]
- Terris, B.D.; Mamin, H.J.; Rugar, D.; Studenmund, W.R.; Kino, G.S. Near-field Optical Data Storage Using a Solid Immersion Lens. Appl. Phys. Lett. 1994, 65, 388–390. [Google Scholar] [CrossRef]
- Tsujioka, T.; Irie, M. Theoretical Study of the Recording Density Limit of a Near-Field Photochromic Memory. J. Opt. Soc. Am. B 1998, 15, 1140. [Google Scholar] [CrossRef]
- Partovi, A.; Peale, D.; Wuttig, M.; Murray, C.A.; Zydzik, G.; Hopkins, L.; Baldwin, K.; Hobson, W.S.; Wynn, J.; Lopata, J.; et al. High-Power Laser Light Source for near-Field Optics and Its Application to High-Density Optical Data Storage. Appl. Phys. Lett. 1999, 75, 1515–1517. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Zhou, Z.; Chen, X.; Qin, N.; Jiang, J.; Liu, K.; Liu, M.; Tao, T.H.; Li, W. A Rewritable Optical Storage Medium of Silk Proteins Using Near-Field Nano-Optics. Nat. Nanotechnol. 2020, 15, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Parthenopoulos, D.A.; Rentzepis, P.M. Three-Dimensional Optical Storage Memory. Science 1989, 245, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, B.H.; Ananthavel, S.P.; Barlow, S.; Dyer, D.L.; Ehrlich, J.E.; Erskine, L.L.; Heikal, A.A.; Kuebler, S.M.; Lee, I.-Y.S.; McCord-Maughon, D.; et al. Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication. Nature 1999, 398, 51–54. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Chen, Y.; Zhang, Q.; Huang, W. Two-Photon-Induced Polarization-Multiplexed and Multilevel Storage in Photoisomeric Copolymer Film. Opt. Lett. 2010, 35, 46. [Google Scholar] [CrossRef]
- Grotjohann, T.; Testa, I.; Leutenegger, M.; Bock, H.; Urban, N.T.; Lavoie-Cardinal, F.; Willig, K.I.; Eggeling, C.; Jakobs, S.; Hell, S.W. Diffraction-Unlimited All-Optical Imaging and Writing with a Photochromic GFP. Nature 2011, 478, 204–208. [Google Scholar] [CrossRef]
- Li, X.; Cao, Y.; Tian, N.; Fu, L.; Gu, M. Multifocal Optical Nanoscopy for Big Data Recording at 30 TB Capacity and Gigabits/Second Data Rate. Optica 2015, 2, 567. [Google Scholar] [CrossRef]
- Zhan, Q.; Leger, J. Focus Shaping Using Cylindrical Vector Beams. Opt. Express 2002, 10, 324. [Google Scholar] [CrossRef]
- Dorn, R.; Quabis, S.; Leuchs, G. Sharper Focus for a Radially Polarized Light Beam. Phys. Rev. Lett. 2003, 91, 233901. [Google Scholar] [CrossRef]
- Chen, W.; Zhan, Q. Three-Dimensional Focus Shaping with Cylindrical Vector Beams. Opt. Commun. 2006, 265, 411–417. [Google Scholar] [CrossRef]
- Kitamura, K.; Sakai, K.; Noda, S. Sub-Wavelength Focal Spot with Long Depth of Focus Generated by Radially Polarized, Narrow-Width Annular Beam. Opt. Express 2010, 18, 4518–4525. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Wang, S.; Zhou, J. Minimized Spot of Annular Radially Polarized Focusing Beam. Opt. Lett. 2013, 38, 1331. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Chen, Y.; Yang, K.; Zhou, J. Harnessing the Point-Spread Function for High-Resolution Far-Field Optical Microscopy. Phys. Rev. Lett. 2014, 113, 263901. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xie, X.; Zhou, J. Generalized Vector Wave Theory for Ultrahigh Resolution Confocal Optical Microscopy. J. Opt. Soc. Am. A 2017, 34, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Pereira, S.; Urbach, P. Confocal Microscopy with a Radially Polarized Focused Beam. Opt. Express 2018, 26, 29600. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, B.; Wu, B.; Li, X.; Ma, J.; Sun, P.; Zheng, S.; Tan, J. Image Scanning Microscopy with a Long Depth of Focus Generated by an Annular Radially Polarized Beam. Opt. Express 2020, 28, 39288. [Google Scholar] [CrossRef]
- Kozawa, Y.; Sakashita, R.; Uesugi, Y.; Sato, S. Imaging with a Longitudinal Electric Field in Confocal Laser Scanning Microscopy to Enhance Spatial Resolution. Opt. Express 2020, 28, 18418. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, J. Improving the Recording Ability of a Near-Field Optical Storage System by Higher-Order Radially Polarized Beams. Opt. Express 2009, 17, 3698. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Hirose, Y.; Fujii, H.; Kubota, K. High Density Recording by Superresolution in an Optical Disk Memory System. Appl. Opt. 1990, 29, 3046. [Google Scholar] [CrossRef]
- Huang, C.; Bouhelier, A.; des Francs, G.C.; Legay, G.; Weeber, J.-C.; Dereux, A. Far-Field Imaging of the Electromagnetic Local Density of Optical States. Opt. Lett. 2008, 33, 300. [Google Scholar] [CrossRef]
- Carminati, R.; Cazé, A.; Cao, D.; Peragut, F.; Krachmalnicoff, V.; Pierrat, R.; De Wilde, Y. Electromagnetic Density of States in Complex Plasmonic Systems. Surf. Sci. Rep. 2015, 70, 1–41. [Google Scholar] [CrossRef]
- Asatryan, A.A.; Busch, K.; McPhedran, R.C.; Botten, L.C.; Martijn de Sterke, C.; Nicorovici, N.A. Two-Dimensional Green’s Function and Local Density of States in Photonic Crystals Consisting of a Finite Number of Cylinders of Infinite Length. Phys. Rev. E 2001, 63, 046612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, M.; Klijn, J.; Meyer, C.; Getzlaff, M.; Adelung, R.; Römer, R.A.; Rossnagel, K.; Kipp, L.; Skibowski, M.; Wiesendanger, R. Direct Comparison between Potential Landscape and Local Density of States in a Disordered Two-Dimensional Electron System. Phys. Rev. Lett. 2002, 89, 136806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignuzzi, S.; Vezzoli, S.; Horsley, S.A.R.; Barnes, W.L.; Maier, S.A.; Sapienza, R. Nanoscale Design of the Local Density of Optical States. Nano Lett. 2019, 19, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
- Cazé, A.; Pierrat, R.; Carminati, R. Spatial Coherence in Complex Photonic and Plasmonic Systems. Phys. Rev. Lett. 2013, 110, 063903. [Google Scholar] [CrossRef]
- Castanié, E.; Krachmalnicoff, V.; Cazé, A.; Pierrat, R.; De Wilde, Y.; Carminati, R. Distance Dependence of the Local Density of States in the near Field of a Disordered Plasmonic Film. Opt. Lett. 2012, 37, 3006. [Google Scholar] [CrossRef] [Green Version]
- Imura, K.; Nagahara, T.; Okamoto, H. Near-Field Optical Imaging of Plasmon Modes in Gold Nanorods. J. Chem. Phys. 2005, 122, 154701. [Google Scholar] [CrossRef]
- Colas des Francs, G.; Girard, C.; Weeber, J.-C.; Dereux, A. Relationship between Scanning Near-Field Optical Images and Local Density of Photonic States. Chem. Phys. Lett. 2001, 345, 512–516. [Google Scholar] [CrossRef]
- Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M. Polarization-Sensitive near-Field Investigation of Photonic Crystal Microcavities. Appl. Phys. Lett. 2009, 94, 163102. [Google Scholar] [CrossRef] [Green Version]
- Chicanne, C.; David, T.; Quidant, R.; Weeber, J.C.; Lacroute, Y.; Bourillot, E.; Dereux, A.; Colas des Francs, G.; Girard, C. Imaging the Local Density of States of Optical Corrals. Phys. Rev. Lett. 2002, 88, 097402. [Google Scholar] [CrossRef] [Green Version]
- Viarbitskaya, S.; Teulle, A.; Marty, R.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Tailoring and Imaging the Plasmonic Local Density of States in Crystalline Nanoprisms. Nat. Mater. 2013, 12, 426–432. [Google Scholar] [CrossRef]
- Haberfehlner, G.; Schmidt, F.-P.; Schaffernak, G.; Hörl, A.; Trügler, A.; Hohenau, A.; Hofer, F.; Krenn, J.R.; Hohenester, U.; Kothleitner, G. 3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography. Nano Lett. 2017, 17, 6773–6777. [Google Scholar] [CrossRef] [PubMed]
- Hörl, A.; Haberfehlner, G.; Trügler, A.; Schmidt, F.-P.; Hohenester, U.; Kothleitner, G. Tomographic Imaging of the Photonic Environment of Plasmonic Nanoparticles. Nat. Commun. 2017, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, C.; David, T.; Chicanne, C.; Mary, A.; Des Francs, G.C.; Bourillot, E.; Weeber, J.-C.; Dereux, A. Imaging Surface Photonic States with a Circularly Polarized Tip. Europhys. Lett. 2004, 68, 797–803. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-0-511-79419-3. [Google Scholar]
- Girard, C.; Dujardin, E.; Baffou, G.; Quidant, R. Shaping and Manipulation of Light Fields with Bottom-up Plasmonic Structures. New J. Phys. 2008, 10, 105016. [Google Scholar] [CrossRef]
- Meng, Y.; Cheng, G.; Man, Z.; Xu, Y.; Zhou, S.; Bian, J.; Lu, Z.; Zhang, W. Deterministic Assembly of Single Sub-20 Nm Functional Nanoparticles Using a Thermally Modified Template with a Scanning Nanoprobe. Adv. Mater. 2020, 32, 2005979. [Google Scholar] [CrossRef]
- Knoll, A.W.; Pires, D.; Coulembier, O.; Dubois, P.; Hedrick, J.L.; Frommer, J.; Duerig, U. Probe-Based 3-D Nanolithography Using Self-Amplified Depolymerization Polymers. Adv. Mater. 2010, 22, 3361–3365. [Google Scholar] [CrossRef]
- Ni, S.; Isa, L.; Wolf, H. Capillary Assembly as a Tool for the Heterogeneous Integration of Micro- and Nanoscale Objects. Soft Matter 2018, 14, 2978–2995. [Google Scholar] [CrossRef]
- Flauraud, V.; Mastrangeli, M.; Bernasconi, G.D.; Butet, J.; Alexander, D.T.L.; Shahrabi, E.; Martin, O.J.F.; Brugger, J. Nanoscale Topographical Control of Capillary Assembly of Nanoparticles. Nat. Nanotechnol. 2017, 12, 73–80. [Google Scholar] [CrossRef]
- Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N.D.; Wolf, H. Nanoparticle Printing with Single-Particle Resolution. Nat. Nanotechnol. 2007, 2, 570–576. [Google Scholar] [CrossRef]
- Ni, S.; Leemann, J.; Wolf, H.; Isa, L. Insights into Mechanisms of Capillary Assembly. Faraday Discuss. 2015, 181, 225–242. [Google Scholar] [CrossRef]
- Liu, Z.; Agarwal, K. Silicon Substrate Significantly Alters Dipole-Dipole Resolution in Coherent Microscope. Opt. Express 2020, 28, 39713. [Google Scholar] [CrossRef] [PubMed]
- Leutenegger, M.; Rao, R.; Leitgeb, R.A.; Lasser, T. Fast Focus Field Calculations. Opt. Express 2006, 14, 11277. [Google Scholar] [CrossRef]
- Lin, J.; Rodríguez-Herrera, O.G.; Kenny, F.; Lara, D.; Dainty, J.C. Fast Vectorial Calculation of the Volumetric Focused Field Distribution by Using a Three-Dimensional Fourier Transform. Opt. Express 2012, 20, 1060. [Google Scholar] [CrossRef] [PubMed]
- Yurkin, M.A.; Hoekstra, A.G. The Discrete Dipole Approximation: An Overview and Recent Developments. J. Quant. Spectrosc. Radiat. Transfer 2007, 106, 558–589. [Google Scholar] [CrossRef] [Green Version]
- Schmehl, R.; Nebeker, B.M.; Hirleman, E.D. Discrete-Dipole Approximation for Scattering by Features on Surfaces by Means of a Two-Dimensional Fast Fourier Transform Technique. J. Opt. Soc. Am. A 1997, 14, 3026. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.; Zhang, A.; Xie, X.; Meng, Y.; Zhang, W.; Zhou, J.; Liang, H. Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures. Nanomaterials 2022, 12, 2274. https://doi.org/10.3390/nano12132274
Guan G, Zhang A, Xie X, Meng Y, Zhang W, Zhou J, Liang H. Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures. Nanomaterials. 2022; 12(13):2274. https://doi.org/10.3390/nano12132274
Chicago/Turabian StyleGuan, Guorong, Aiqin Zhang, Xiangsheng Xie, Yan Meng, Weihua Zhang, Jianying Zhou, and Haowen Liang. 2022. "Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures" Nanomaterials 12, no. 13: 2274. https://doi.org/10.3390/nano12132274
APA StyleGuan, G., Zhang, A., Xie, X., Meng, Y., Zhang, W., Zhou, J., & Liang, H. (2022). Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures. Nanomaterials, 12(13), 2274. https://doi.org/10.3390/nano12132274