Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Precursor, NiCo(OH)4
2.2. Preparation of Nano-Cere-Shell Materials NiCo(OH)4-NiO
2.3. Characterizations and Electrochemical Measurements
2.4. Electrochemical Properties Measurements
3. Results and Discussion
3.1. Composition
3.2. Surface Microtopography
3.3. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, D.; Chen, S.; Zhu, W.; Wang, C.; Lu, X. Metal–organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-performance supercapacitors. Mater. Chem. Front. 2019, 17, 1653–1660. [Google Scholar] [CrossRef]
- Wang, X.T.; Ouyang, T.; Wang, L.; Zhong, J.H.; Liu, Z.Q. Surface Reorganization on Electrochemically-Induced Zn-Ni-Co Spinel Oxides for Enhanced Oxygen Electrocatalysis. Angew. Chem. 2020, 16, 6554–6561. [Google Scholar] [CrossRef]
- Huang, J.; Liu, T.; Wang, R.; Zhang, M.; Wang, L.; She, H.; Wang, Q. Facile loading of cobalt oxide on bismuth vanadate: Proved construction of p-n junction for efficient photoelectrochemical water oxidation. J. Colloid Interface Sci. 2020, 570, 89–98. [Google Scholar] [CrossRef]
- Xiao, K.; Xiao, T.; Zhang, Y.; Xie, J.; Cao, M.; Li, N.; Ouyang, T.; Liu, Z.Q. In situ evolution of the active phase on stainless steel mesh toward a cost-effective bifunctional electrode for energy storage and conversion. Chem. Commun. 2019, 55, 2513–2516. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.F.; Kyratzis, I.L.; Best, A.S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Mater. Sci. Aust. 2020, 32, 1904205. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Ence 2018, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Ma, X.; Li, L.; Zhou, X.; Zhang, Z. Asymmetric supercapacitors by integrating high content Na+/K+-inserted MnO2 nanosheets and layered Ti3C2Tx paper-ScienceDirect. Electrochim. Acta 2020, 322, 135497. [Google Scholar] [CrossRef]
- Qi, J.; Chang, Y.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y.; Jin, Y. Facile Synthesis of Ag-Decorated Ni3S2 Nanosheets with 3D Bush Structure Grown on rGO and Its Application as Positive Electrode Material in Asymmetric Supercapacitor. Adv. Mater. Interfaces 2017, 3, 1700985. [Google Scholar]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Adv. Sci. 2016, 5, 1500286. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 22, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.Y.; Li, M.; El-Kady, M.F.; Kaner, R.B. Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Adv. Funct. Mater. 2017, 15, 1605745. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Chen, J.; Shen, P.W. Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries. J. Power Sources 2005, 150, 255–260. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, D.; Liu, T.; Jaroniec, M.; Yu, J. Nickel-based materials for supercapacitors. Mater. Today 2018, 25, 35–65. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, D.; Wang, T.; Meng, S.; Chen, M. Ag nanoparticle-decorated CoS nanosheet nanocomposites: A high-performance material for multifunctional applications in photocatalysis and supercapacitors. RSC Adv. 2016, 6, 55039–55045. [Google Scholar] [CrossRef]
- Chime, U.K.; Nkele, A.C.; Ezugwu, S.; Nwanya, A.C.; Shinde, N.M.; Kebede, M.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Recent progress in nickel oxide-based electrodes for high-performance supercapacitors-ScienceDirect. Curr. Opin. Electrochem. 2020, 21, 175–181. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 7, 16033. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; He, M.; Wangyang, P.; Lu, Y.; Gu, L. Electrolytic approach towards the controllable synthesis of NiO nanocrystalline and self-assembly mechanism of Ni(OH)2 precursor under electric, temperature and magnetic fields. CrystEngComm 2018, 20, 2384–2395. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, S.; Liu, J.; Qi, N.; Chen, Z. Metal–organic framework derived NiO/[emailprotected] composites as electrode materials with excellent electrochemical performance for supercapacitors. J. Energy Storage 2021, 37, 32054–32065. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, L.; Chai, H.; Xu, Y.; Jiao, Y.; Chen, J. Molybdenum doped induced amorphous phase in cobalt acid nickel for supercapacitor and oxygen evolution reaction. J. Colloid Interface Sci. 2022, 606, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Manibalan, G.; Govindaraj, Y.; Yesuraj, J.; Kuppusami, P.; Murugadoss, G.; Murugavel, R.; Kumar, M.R. Facile synthesis of NiO@Ni(OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J. Colloid Interface Sci. 2021, 85, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, H.; Hu, J.; Jiang, L.; Liu, W.; Wang, S.; Zhang, S.; Yin, J.; Lu, J. In situ synthesis of NiO@Ni micro/nanostructures as supercapacitor electrodes based on femtosecond laser adjusted electrochemical anodization. Appl. Surf. Sci. 2021, 541, 148216. [Google Scholar] [CrossRef]
- Huang, X.; Sun, R.; Li, Y.; Jiang, J.; Li, M.; Xu, W.; Wang, Y.; Cong, H.; Tang, J.; Han, S. Two-step electrodeposition synthesis of heterogeneous NiCo-layered double hydroxides@MoO3 nanocomposites on nickel foam with high performance for hybrid supercapacitors. Electrochim. Acta 2022, 403, 139680. [Google Scholar] [CrossRef]
- Schiavi, P.G.; Altimari, P.; Marzolo, F.; Rubino, A.; Zanoni, R.; Pagnanelli, F. Optimizing the structure of Ni–Ni(OH)2/NiO core-shell nanowire electrodes for application in pseudocapacitors: The influence of metallic core, Ni(OH)2/NiO ratio and nanowire length. J. Alloy Compd. 2021, 856, 157781. [Google Scholar] [CrossRef]
- Mozaffari, S.A.; Mahmoudi, S.H.; Norouzi, Z. Hierarchical NiO@Ni(OH)2 Nanoarrays as High-Performance Supercapacitor Electrode Material. Electrochim. Acta 2021, 368, 137633. [Google Scholar] [CrossRef]
- Yan, S.X.; Luo, S.H.; Feng, J.; Li, P.W.; Guo, R.; Wang, Q.; Zhang, Y.H.; Liu, Y.G.; Bao, S. Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem. Eng. J. 2020, 381, 122695. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Li, Z.; Ning, J.; Zhong, Y.; Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544. [Google Scholar] [CrossRef]
- Lee, C.S.; Lim, J.M.; Park, J.T.; Kim, J.H. Direct Growth of Highly Organized, 2D Ultra-thin Nano-accordion Ni-MOF@NiS2@C Core-Shell for High Performance Energy Storage Device. Chem. Eng. J. 2020, 406, 126810. [Google Scholar] [CrossRef]
- Sahay, P.P. Galvanostatically deposited Co3O4–NiO nanocomposite thin films onto FTO glass substrates: An investigation of their microstructural and supercapacitive properties-ScienceDirect. J. Alloy Compd. 2021, 867, 159022. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, X.; Zeng, Z.; Shi, W.; Zhu, Y.; Yan, Q.; Liu, H.; Wang, J.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221. [Google Scholar] [CrossRef] [Green Version]
- Zequine, C.; Bhoyate, S.; Siam, K.; Kahol, P.K.; Kostoglou, N.; Mitterer, C.; Hinder, S.J.; Baker, M.A.; Constantinides, G.; Rebholz, C.; et al. Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surf. Coat. Technol. 2018, 354, 306–312. [Google Scholar] [CrossRef]
- Zhan, J.; Shan, L.; Sui, Y.; Qi, J.; Wei, F.; He, Y.; Meng, Q.; Sun, Z.; Liu, J. Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 13462–13473. [Google Scholar] [CrossRef]
- Kvasha, A.; Azaceta, E.; Leonet, O.; Bengoechea, M.; Boyano, I.; Tena-Zaera, R.; de Meatza, I.; Miguel, O.; Grande, H.J.; Blazquez, J.A. Ni/NiO Based 3D Core-Shell Foam Anode for Lithium Ion Batteries. Electrochim. Acta 2015, 180, 16–21. [Google Scholar] [CrossRef]
- Khan, M.; Rafique, M.Y.; Razaq, A.; Mir, A.; Karim, S.; Anwar, S.; Sultana, I. Fabrication of Au/Ni/NiO heterostructure nanowires by electrochemical deposition and their temperature dependent magnetic properties. J. Solid State Chem. 2020, 284, 121186. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Li, M.; Li, C.; Dai, H.; Sun, D.; Yang, B. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens. Actuators B Chem. 2018, 259, 433–442. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, R.; Zhang, H.; Liu, Q.; Liu, J.; Yu, J.; Wang, C.; Sun, Z.; Wang, J. Hierarchical NiSe@Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochim. Acta 2018, 294, 325–336. [Google Scholar] [CrossRef]
- Hua, W.; Schwarz, B.; Azmi, R.; Müller, M.; Darma, M.S.D.; Knapp, M.; Senyshyn, A.; Heere, M.; Missyul, A.; Simonelli, L.; et al. Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co,Mn)O2 cathode materials. Nano Energy 2020, 78, 105231. [Google Scholar] [CrossRef]
- Joseph, N.; Shafi, P.M.; Sethulakshmi, J.S.; Karthik, R.; Bose, A.C.; Shim, J.J. Three Dimensional NiO Nanonetwork Electrode for Efficient Ultra-fast Electrochemical Energy Storage Application. Electrochim. Acta 2021, 3, 139392. [Google Scholar] [CrossRef]
- QayoomMugheri, A.; Aftab, U.; IshaqAbro, M.; Chaudhry, S.R.; Amaral, L.; Ibupoto, Z.H. Co3O4/NiO bifunctional electrocatalyst for water splitting. Electrochim. Acta 2019, 306, 9–17. [Google Scholar] [CrossRef]
- Feng, X.; Huang, Y.; Li, C.; Xiao, Y.; Chen, X.; Gao, X.; Chen, C. Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 2019, 308, 142–149. [Google Scholar] [CrossRef]
- Yus, J.; Bravo, Y.; Sanchez-Herencia, A.J.; Ferrari, B.; Gonzalez, Z. Electrophoretic Deposition of rGO-NiO Core-Shell nanostructures driven by Heterocoagulation Method with High Electrochemical Performance. Electrochim. Acta 2019, 308, 363–372. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, F.; Li, Y.; Qin, C.; Zhu, J.; Hu, Q.; Wang, Z.; Inoue, A. Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors. Electrochim. Acta 2019, 297, 767–777. [Google Scholar] [CrossRef]
- Tan, P.; Chen, B.; Xu, H.; Cai, W.; He, W.; Ni, M. Growth of Al and Co co-doped NiO nanosheets on carbon cloth as the air electrode for Zn-air batteries with high cycling stability. Electrochim. Acta 2018, 290, 21–29. [Google Scholar] [CrossRef]
- Yi, T.F.; Li, Y.M.; Wu, J.Z.; Xie, Y.; Luo, S. Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 2018, 284, 128–141. [Google Scholar] [CrossRef]
- Kumar, R.; Matsuo, R.; Kishida, K.; Abdel-Galeil, M.M.; Suda, Y.; Matsuda, A. Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. Electrochim. Acta 2019, 303, 246–256. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Lu, J.; Luo, S.; Wan, J.; Li, B.; Hu, C.; Cheng, X. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 2021, 86, 106079. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, Y.; Chen, Y.; Zhou, Q.; Rong, H.; Hu, X.; Chen, H.; Zhu, L.; Han, S. Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors. Electrochim. Acta 2020, 342, 136077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yuan, M.; Cao, X.; Ding, C.; Ma, J.; Wei, Z. Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO. Nanomaterials 2022, 12, 2276. https://doi.org/10.3390/nano12132276
Wang K, Yuan M, Cao X, Ding C, Ma J, Wei Z. Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO. Nanomaterials. 2022; 12(13):2276. https://doi.org/10.3390/nano12132276
Chicago/Turabian StyleWang, Kai, Meini Yuan, Xiaochen Cao, Congming Ding, Jian Ma, and Zeyuan Wei. 2022. "Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO" Nanomaterials 12, no. 13: 2276. https://doi.org/10.3390/nano12132276
APA StyleWang, K., Yuan, M., Cao, X., Ding, C., Ma, J., & Wei, Z. (2022). Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO. Nanomaterials, 12(13), 2276. https://doi.org/10.3390/nano12132276