Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasai, S.; Nakatani, Y.; Kobayashi, K.; Kohno, H.; Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 2006, 97, 107204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demidov, V.E.; Urazhdin, S.; Liu, R.; Divinskiy, B.; Telegin, A.; Demokritov, S.O. Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 2016, 7, 10446. [Google Scholar] [CrossRef] [PubMed]
- Walowski, J.; Münzenberg, M. Perspective: Ultrafast magnetism and THz spintronics. J. Appl. Phys. 2016, 120, 140901. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, P.; Sherman, E.Y. Uniform magnetization dynamics of a submicron ferromagnetic disk driven by the spin–orbit coupled spin torque. J. Phys. D Appl. Phys. 2017, 50, 265004. [Google Scholar] [CrossRef] [Green Version]
- Antos, R.; Otani, Y.; Shibata, J. Magnetic vortex dynamics. J. Phys. Soc. Jpn. 2008, 77, 031004. [Google Scholar] [CrossRef]
- Cowburn, R.P.; Koltsov, D.K.; Adeyeye, A.O.; Welland, M.E.; Tricker, D.M. Single-Domain Circular Nanomagnets. Phys. Rev. Lett. 1999, 83, 1042–1045. [Google Scholar] [CrossRef]
- Shinjo, T. Magnetic Vortex Core Observation in Circular Dots of Permalloy. Science 2000, 289, 930–932. [Google Scholar] [CrossRef] [Green Version]
- Lukyanchuk, I.; Vinokur, V.; Rydh, A.; Xie, R.; Milošević, M.; Welp, U.; Zach, M.; Xiao, Z.; Crabtree, G.; Bending, S.; et al. Rayleigh instability of confined vortex droplets in critical superconductors. Nat. Phys. 2015, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Thiele, A.A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 1973, 30, 230–233. [Google Scholar] [CrossRef]
- Guslienko, K.Y.; Ivanov, B.A.; Novosad, V.; Otani, Y.; Shima, H.; Fukamichi, K. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 2002, 91, 8037–8039. [Google Scholar] [CrossRef]
- Park, J.P.; Eames, P.; Engebretson, D.M.; Berezovsky, J.; Crowell, P.A. Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 2003, 67, 020403. [Google Scholar] [CrossRef] [Green Version]
- Guslienko, K.Y.; Lee, K.S.; Kim, S.K. Dynamic origin of vortex core switching in soft magnetic nanodots. Phys. Rev. Lett. 2008, 100, 027203. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, K.S.; Roy, P.E.; Grimsditch, M.; Fradin, F.Y.; Guslienko, K.Y.; Bader, S.D.; Novosad, V. Soliton-pair dynamics in patterned ferromagnetic ellipses. Nat. Phys. 2005, 1, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Novosad, V.; Fradin, F.Y.; Roy, P.E.; Buchanan, K.S.; Guslienko, K.Y.; Bader, S.D. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B—Condens. Matter Mater. Phys. 2005, 72, 024455. [Google Scholar] [CrossRef] [Green Version]
- Shibata, J.; Nakatani, Y.; Tatara, G.; Kohno, H.; Otani, Y. Current-induced magnetic vortex motion by spin-transfer torque. Phys. Rev. B 2006, 73, 020403. [Google Scholar] [CrossRef] [Green Version]
- Pribiag, V.S.; Krivorotov, I.N.; Fuchs, G.D.; Braganca, P.M.; Ozatay, O.; Sankey, J.C.; Ralph, D.C.; Buhrman, R.A. Magnetic vortex oscillator driven by dc spin-polarized current. Nat. Phys. 2007, 3, 498–503. [Google Scholar] [CrossRef]
- Yamada, K.; Kasai, S.; Nakatani, Y.; Kobayashi, K.; Kohno, H.; Thiaville, A.; Ono, T. Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 2007, 6, 270–273. [Google Scholar] [CrossRef]
- Gaididei, Y.; Sheka, D.D.; Mertens, F.G. Controllable switching of vortex chirality in magnetic nanodisks by a field pulse. Appl. Phys. Lett. 2008, 92, 012503. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Drews, A.; Kamionka, T.; Bolte, M.; Meier, G. Influence of Dipolar Interaction on Vortex Dynamics in Arrays of Ferromagnetic Disks. Phys. Rev. Lett. 2010, 105, 037201. [Google Scholar] [CrossRef]
- Vogel, A.; Kamionka, T.; Martens, M.; Drews, A.; Chou, K.W.; Tyliszczak, T.; Stoll, H.; Van Waeyenberge, B.; Meier, G. Coupled vortex oscillations in spatially separated permalloy squares. Phys. Rev. Lett. 2011, 106, 137201. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Fukuma, Y.; Kasai, S.; Kimura, T.; Barman, A.; Otani, Y. Dynamics of coupled vortices in a pair of ferromagnetic disks. Phys. Rev. Lett. 2011, 106, 197203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussaux, A.; Khvalkovskiy, A.V.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A. Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 86, 014402. [Google Scholar] [CrossRef]
- Suess, D.; Bachleitner-Hofmann, A.; Satz, A.; Weitensfelder, H.; Vogler, C.; Bruckner, F.; Abert, C.; Prügl, K.; Zimmer, J.; Huber, C.; et al. Topologically protected vortex structures for low-noise magnetic sensors with high linear range. Nat. Electron. 2018, 1, 362–370. [Google Scholar] [CrossRef]
- Yakata, S.; Miyata, M.; Nonoguchi, S.; Wada, H.; Kimura, T. Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field. Appl. Phys. Lett. 2010, 97, 222503. [Google Scholar] [CrossRef]
- Vogel, A.; Corinna Niemann, A.; Stenner, C.; Drews, A.; Im, M.Y.; Fischer, P.; Meier, G. Vortex dynamics in triangular-shaped confining potentials. J. Appl. Phys. 2012, 112, 063916. [Google Scholar] [CrossRef] [Green Version]
- Yakata, S.; Tanaka, T.; Kiseki, K.; Matsuyama, K.; Kimura, T. Wide range tuning of resonant frequency for a vortex core in a regular triangle magnet. Sci. Rep. 2013, 3, 3567. [Google Scholar] [CrossRef] [Green Version]
- Langner, H.H.; Bocklage, L.; Matsuyama, T.; Meier, G. Inductive detection of magnetic vortex gyration. Phys. Rev. B-Condens. Matter Mater. Phys. 2013, 87, 064420. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Hu, S.; Hidegara, M.; Yakata, S.; Kimura, T. Sensitive detection of vortex-core resonance using amplitude-modulated magnetic field. Sci. Rep. 2015, 5, 17922. [Google Scholar] [CrossRef]
- Kuepferling, M.; Serpico, C.; Pufall, M.; Rippard, W.; Wallis, T.M.; Imtiaz, A.; Krivosik, P.; Pasquale, M.; Kabos, P. Two modes behavior of vortex oscillations in spin-transfer nanocontacts subject to in-plane magnetic fields. Appl. Phys. Lett. 2010, 96, 252507. [Google Scholar] [CrossRef] [Green Version]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Cui, X.; Wang, K.; Yakata, S.; Kimura, T. Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot. Nanomaterials 2022, 12, 2295. https://doi.org/10.3390/nano12132295
Hu S, Cui X, Wang K, Yakata S, Kimura T. Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot. Nanomaterials. 2022; 12(13):2295. https://doi.org/10.3390/nano12132295
Chicago/Turabian StyleHu, Shaojie, Xiaomin Cui, Kang Wang, Satoshi Yakata, and Takashi Kimura. 2022. "Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot" Nanomaterials 12, no. 13: 2295. https://doi.org/10.3390/nano12132295
APA StyleHu, S., Cui, X., Wang, K., Yakata, S., & Kimura, T. (2022). Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot. Nanomaterials, 12(13), 2295. https://doi.org/10.3390/nano12132295