Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator
Abstract
:1. Introduction
2. Device Design
3. Device Performance Characterization
4. Optical Bistability Generation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, P.; Chen, Y.-K.; Duan, G.-H.; Neilson, D.T. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Yu, R.; Cheung, S.; Li, Y.; Okamoto, K.; Proietti, R.; Yin, Y.; Yoo, S.J.B. A scalable silicon photonic chip-scale optical switch for high performance computing systems. Opt. Express 2013, 21, 32655–32667. [Google Scholar] [CrossRef] [PubMed]
- Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H.X. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nature 2016, 7, 10352. [Google Scholar] [CrossRef] [Green Version]
- Melikyan, A.; Alloatti, L.; Muslija, A.; Hillerkuss, D.; Schindler, P.C.; Li, J.; Palmer, R.; Korn, D.; Muehlbrandt, S.; Van Thourhout, D.; et al. High-speed plasmonic phase modulators. Nat. Photonics 2014, 8, 229–233. [Google Scholar] [CrossRef]
- Poellinger, M.; Rauschenbeutel, A. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect. Opt. Express 2010, 18, 17764–17775. [Google Scholar] [CrossRef]
- Van, V.; Ibrahim, T.A.; Absil, P.P.; Johnson, F.G.; Grover, R.; Ho, P.T. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 705–713. [Google Scholar] [CrossRef]
- Wang, S.; Ciftcioglu, B.; Wu, H. Microring-based optical pulse-train generator. Opt. Express 2010, 18, 19314–19323. [Google Scholar] [CrossRef]
- Donati, G.; Mirasso, C.R.; Mancinelli, M.; Pavesi, L.; Argyris, A. Microring resonators with external optical feedback for time delay reservoir computing. Opt. Express 2022, 30, 522–537. [Google Scholar] [CrossRef]
- Tossoun, B. The memristor laser. Compd. Semicond. 2021, 27, 34–38. [Google Scholar]
- Zhong, C.; Zhang, Z.; Ma, H.; Wei, M.; Ye, Y.; Wu, J.; Tang, B.; Zhang, P.; Liu, R.; Li, J.; et al. Silicon Thermo-Optic Switches with Graphene Heaters Operating at Mid-Infrared Waveband. Nanomaterials 2022, 12, 1083. [Google Scholar] [CrossRef]
- Wu, J.L.; Wang, T.; Yang, Y.D.; Xiao, J.L.; Huang, Y.Z. Optical frequency comb and picosecond pulse generation based on a directly modulated microcavity laser. Appl. Opt. 2021, 60, 4177–4184. [Google Scholar] [CrossRef] [PubMed]
- Maguire, P.J.; Barry, L.P.; Krug, T.; Guo, W.H.; O’Dowd, J.; Lynch, M.; Bradley, A.L.; Donegan, J.F.; Folliot, H. Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network. J. Lightwave Technol. 2006, 24, 2683–2692. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Popovic, M.A. Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity. Opt. Express 2014, 22, 15837–15867. [Google Scholar] [CrossRef]
- Massoubre, D.; Oudar, J.L.; O’Hare, A.; Gay, M.; Bramerie, L.; Simon, J.-C.; Shen, A.; Decobert, J. Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates. J. Lightwave Technol. 2006, 24, 3400–3408. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, L.; Fei, Y.; Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express 2012, 20, 7454–7468. [Google Scholar] [CrossRef]
- Sethi, P.; Roy, S. All-Optical Ultrafast Switching in 2 x 2 Silicon Microring Resonators and its Application to Reconfigurable DEMUX/MUX and Reversible Logic Gates. J. Lightwave Technol. 2014, 32, 2173–2180. [Google Scholar] [CrossRef]
- Yang, W.; Joshi, A.; Xiao, M. Single-photon all-optical switching using coupled microring resonators. Pramana J. Phys. 2007, 69, 219–228. [Google Scholar] [CrossRef]
- Chen, Y.; Blair, S. Nonlinear phase shift of cascaded microring resonators. J. Opt. Soc. Am. B Opt. Phys. 2003, 20, 2125–2132. [Google Scholar] [CrossRef]
- Poon, A.W.; Luo, X.; Xu, F.; Chen, H. Cascaded Microresonator-Based Matrix Switch for Silicon On-Chip Optical Interconnection. Proc. IEEE. 2009, 97, 1216–1238. [Google Scholar] [CrossRef]
- Das, T.K.; Bhar, G.C. Optical bistability and multistability in a photorefractive bidirectional ring oscillator. Opt. Quantum Electron. 1993, 25, 663–674. [Google Scholar] [CrossRef]
- Zhuang, S.; Feng, J.; Liu, H.; Yuan, S.; Chen, Y.; Zeng, H. Optical multistability in a cross-coupled double-ring resonator system. Opt. Commun. 2022, 507, 127637. [Google Scholar] [CrossRef]
- Zhai, S.; Feng, J.; Sun, X.; Akimoto, R.; Zeng, H. Vertically integrated waveguide self-coupled resonator based tunable optical filter. Opt. Lett. 2018, 43, 3766–3769. [Google Scholar] [CrossRef]
- Zhai, S.; Feng, J.; Sun, X.; Huang, Y.; Zhou, L.; He, J.; Zhang, K.; Cong, G.; Akimoto, R.; Zeng, H. Dual-layer cross-coupled tunable resonator system in a three-dimensional Si3N4 photonic integration platform. J. Lightwave Technol. 2019, 37, 3298–3304. [Google Scholar] [CrossRef]
- Dumeige, Y.; Feron, P. Dispersive tristability in microring resonators. Phys. Rev. E 2005, 72, 066609. [Google Scholar] [CrossRef] [PubMed]
- Belarouci, A.; Hill, K.B.; Liu, Y.; Xiong, Y.; Chang, T.; Craig, A.E. Design and modeling of waveguide-coupled microring resonator. J. Lumin. 2001, 94, 35–38. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, D.; Lin, H.; Li, L.; Moreel, L.; Zhou, J.; Du, Q.; Ogbuu, O.; Danto, S.; Musgraves, J.D.; et al. High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates. Adv. Opt. Mater. 2014, 2, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Hegeman, I.; Dijkstra, M.; Segerink, F.B.; Lee, W.; Garcia-Blanco, S.M. Development of low-loss TiO2 waveguides. Opt. Express 2020, 28, 5982–5990. [Google Scholar] [CrossRef]
- Fang, X.; Yang, L. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J. Semicond. 2017, 38, 104004. [Google Scholar] [CrossRef]
- Peng, Z.; Feng, J.; Yuan, H.; Cheng, W.; Wang, Y.; Ren, X.; Cheng, H.; Zang, S.; Shuai, Y.; Liu, H.; et al. A Non-Volatile Tunable Ultra-Compact Silicon Photonic Logic Gate. Nanomaterials 2022, 12, 1121. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, R.; Jia, L.; Yang, L.; Zhou, P.; Tian, Y.; Chen, P.; Lu, Y.; Jiang, Z.; Liu, Y.; et al. Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt. Lett. 2010, 35, 1620–1622. [Google Scholar] [CrossRef]
- Almeida, V.R.; Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 2004, 29, 2387–2389. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Ye, X.; Soref, R.; Yang, L.; Xu, Q. Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits. Opt. Lett. 2012, 37, 3942–3944. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, D.; Rumley, S.; Calhoun, D.; Li, Q.; Hendry, R.; Samadi, P.; Bergman, K. Scaling silicon photonic switch fabrics for data center interconnection networks. Opt. Express 2015, 23, 1159–1175. [Google Scholar] [CrossRef] [PubMed]
- Priem, G.; Dumon, P.; Bogaerts, W.; Van Thourhout, D.; Morthier, G.; Baets, R. Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures. Opt. Express 2005, 13, 9623–9628. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Feng, J.; Chen, J.; Liu, H.; Yuan, S.; Guo, S.; Yu, Q.; Zeng, H. Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator. Nanomaterials 2022, 12, 2447. https://doi.org/10.3390/nano12142447
Chen Y, Feng J, Chen J, Liu H, Yuan S, Guo S, Yu Q, Zeng H. Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator. Nanomaterials. 2022; 12(14):2447. https://doi.org/10.3390/nano12142447
Chicago/Turabian StyleChen, Yishu, Jijun Feng, Jian Chen, Haipeng Liu, Shuo Yuan, Song Guo, Qinghua Yu, and Heping Zeng. 2022. "Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator" Nanomaterials 12, no. 14: 2447. https://doi.org/10.3390/nano12142447
APA StyleChen, Y., Feng, J., Chen, J., Liu, H., Yuan, S., Guo, S., Yu, Q., & Zeng, H. (2022). Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator. Nanomaterials, 12(14), 2447. https://doi.org/10.3390/nano12142447