Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CuFeS2 Nanoparticles
2.2. POD-like Activity and Kinetic Assay
2.3. Detection of Hydroxyl Radical
2.4. Bacterial Culture and In Vitro Bacteriostatic Experiment
2.5. Fluorescence Detection of Living/Dead Bacteria
2.6. Bacterial ROS Fluorescence Detection
2.7. SEM Characterization of Bacteria
2.8. Biocompatibility Evaluation of CuFeS2 Nanomaterials
2.9. The Rats Woud Model
3. Results and Discussion
3.1. Preparation and Characterization of CuFeS2 NPs
3.2. CuFeS2 NPs Peroxidase Activity and Hydroxyl Radical Production
3.3. Kinetic Studies of the Enzyme-Mimic Activities of the As-Prepared CuFeS2
3.4. Evaluation of Antibacterial Performance of CuFeS2 NPs
3.5. CuFeS2 NPs for the Treatment of Wound Infection in Rats
3.6. Biocompatibility of CuFeS2 NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Jiang, J.; Gao, L. Catalytic antimicrobial therapy using nanozymes. WIREs Nanomed. Nanobiotechnol. 2021, 14, e1769. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Sun, M.; Wu, S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 2022, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Zhang, L.; Wang, H.; You, Y.; Wang, Y.; Gao, N.; Ren, J.; Qu, X. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. 2019, 58, 16236–16242. [Google Scholar] [CrossRef]
- Fang, Y.F.; Ding, X.T.; Xu, G.F.; Gong, S.D.; Niu, Y.S.; Yao, Z.Y.; Jin, Z.Y.; Wang, Y.; Xu, Y.H. Direct synthesis of bienzyme-like carbide-derived carbons via mild electrochemical oxidation of Ti3AlC2 MAX. Biomed. Env. Sci. 2022, 35, 215–224. [Google Scholar]
- Zhang, Y.F.; Li, D.X.; Xu, Y.H.; Niu, Y.S. Application of a cascaded nanozyme in infected wound recovery of diabetic mice. ACS Biomater. Sci. Eng. 2022, 8, 1522–1531. [Google Scholar] [CrossRef]
- Raj, V.; Kim, Y.; Kim, Y.G.; Lee, J.H.; Lee, J. Chitosan-gum arabic embedded alizarin nanocarriers inhibit biofilm formation of multispecies microorganisms. Carbohyd. Polym. 2022, 284, 118959. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Chen, Y.; Guo, L.; Wei, G. Biomimetic two-dimensional nanozymes: Synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B 2020, 8, 10065–10086. [Google Scholar] [CrossRef]
- Wang, L.W.; Gao, F.N.; Wang, A.Z.; Chen, X.Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X.; et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, X.; Liu, Z.; Xu, Y. Visible-light-driven photocatalysis-enhanced nanozyme of TiO2 Nanotubes@MoS2 nanoflowers for efficient wound healing infected with multidrug-resistant bacteria. Small 2021, 17, 210327. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Lin, W.C.; Li, S.D.; Lin, C.Y.; Hsu, S.H. Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl. Mater. Inter. 2013, 5, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. A near-Infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano 2015, 9, 11064–11074. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, X.; Yin, W.; Ma, D.; Xie, C.; Zheng, L.; Dong, X.; Mei, L.; Yu, J.; Wang, C.; et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290. [Google Scholar] [CrossRef]
- Aksoy, İ.; Küçükkeçeci, H.; Sevgi, F.; Metin, Ö.; Hatay Patir, I. Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl. Mater. Inter. 2020, 12, 26822–26831. [Google Scholar] [CrossRef]
- He, H.; Yang, Q.; Li, H.; Meng, S.; Xu, Z.; Chen, X.; Sun, Z.; Jiang, B.; Li, C. Hollow mesoporous MnO2-carbon nanodot-based nanoplatform for GSH depletion enhanced chemodynamic therapy, chemotherapy, and normal/cancer cell differentiation. Mikrochim. Acta 2021, 188, 141. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, X.; Lei, Y.; Cao, D.; Wang, Z. Biodegradable copper-metformin nanoscale coordination polymers for enhanced chemo/chemodynamic synergistic therapy by reducing oxygen consumption to promote H2O2 accumulation. J. Mater. Chem. B 2021, 9, 1988–2000. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, Y.; Du, W.; Liu, Z.; Zhang, S.; Yang, J.; Yao, H.; Liu, T.; Ma, M.; Chen, H. Clearable theranostic platform with a pH-independent chemodynamic therapy enhancement strategy for synergetic photothermal tumor therapy. ACS Appl. Mater. Inter. 2019, 11, 18133–18144. [Google Scholar] [CrossRef]
- Velásquez, P.; Leinen, D.; Pascual, J.; Ramos-Barrado, J.R.; Grez, P.; Gómez, H.; Schrebler, R.; del Río, R.; Córdova, R. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. J. Phys. Chem. B 2005, 109, 4977–4988. [Google Scholar] [CrossRef]
- Yang, A.; Huangfu, X.; Liu, L.; Luo, W.; Zhao, W.; Yin, J. Electrochemiluminescence immunosensor based on signal probe CuFeS2 quantum dots for ultrasensitive detection of cyclin D1. Electroanal. Chem. 2020, 871, 114269. [Google Scholar] [CrossRef]
- Ghahremaninezhad, A.; Dixon, D.G.; Asselin, E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim. Acta 2013, 87, 97–112. [Google Scholar] [CrossRef]
- Sahoo, S.; Pazhamalai, P.; Mariappan, V.K.; Veerasubramani, G.K.; Kim, N.-J.; Kim, S.-J. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors. Inorg. Chem. Front. 2020, 7, 1492–1502. [Google Scholar] [CrossRef]
- Xu, X.; Tang, D.; Cai, J.; Xi, B.; Zhang, Y.; Pi, L.; Mao, X. Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS2) for efficient degradation of 2,4-dichlorophenol in simulated groundwater. Appl. Catal. B Environ. 2019, 251, 273–282. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, F.; Li, S.; Xu, Z.; Sun, W.; Ji, X.; Yang, Y. CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. J. Solid State Electr. 2019, 23, 1991–2000. [Google Scholar] [CrossRef]
- Deen, K.M.; Asselin, E. On the use of a naturally-sourced CuFeS2 mineral concentrate for energy storage. Electrochim. Acta 2019, 297, 1079–1093. [Google Scholar] [CrossRef]
- Da Silveira Salla, J.; Dotto, G.L.; Hotza, D.; Landers, R.; da Boit Martinello, K.; Foletto, E.L. Enhanced catalytic performance of CuFeS2 chalcogenide prepared by microwave-assisted route for photo-fenton oxidation of emerging pollutant in water. J. Environ. Chem. Eng. 2020, 8, 104077. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Tan, J.; Chang, Z.; Liu, X.; Ma, W.; Xu, Y. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small 2021, 17, 2005739. [Google Scholar] [CrossRef]
- Zeng, J.; Goldfeld, D.; Xia, Y. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. 2013, 52, 4169–4173. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Song, C.; Ding, W.; Zhao, W.; Liu, H.; Wang, J.; Yao, Y.; Yao, C. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens. Bioelectron. 2020, 151, 111983. [Google Scholar] [CrossRef]
- Manyasree, D.; Kiran Mayi, P.; Ravikumar, R. CuO nanoparticles: Synthesis, characterization and their bactericidal efficacy. Int. J. App. Pharm. 2017, 9, 71–74. [Google Scholar]
- Li, J.; Hu, Z.E.; We, Y.J.; Liu, Y.H.; Wang, N.; Yu, X.Q. Multifunctional carbon quantum dots as a theranostic nanomedicine for fluorescence imaging-guided glutathione depletion to improve chemodynamic therapy. J. Colloid Interf. Sci. 2022, 606, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, Z.; Zhao, Z.; Li, D.; Zhang, P.; Zhang, Y.; Liu, X.; Ding, X.; Xu, Y. Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria. Nanomaterials 2022, 12, 2469. https://doi.org/10.3390/nano12142469
Liu Z, Liu Z, Zhao Z, Li D, Zhang P, Zhang Y, Liu X, Ding X, Xu Y. Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria. Nanomaterials. 2022; 12(14):2469. https://doi.org/10.3390/nano12142469
Chicago/Turabian StyleLiu, Zezhong, Zengxu Liu, Zhen Zhao, Danxia Li, Pengfei Zhang, Yanfang Zhang, Xiangyong Liu, Xiaoteng Ding, and Yuanhong Xu. 2022. "Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria" Nanomaterials 12, no. 14: 2469. https://doi.org/10.3390/nano12142469
APA StyleLiu, Z., Liu, Z., Zhao, Z., Li, D., Zhang, P., Zhang, Y., Liu, X., Ding, X., & Xu, Y. (2022). Photothermal Regulated Nanozyme of CuFeS2 Nanoparticles for Efficiently Promoting Wound Healing Infected by Multidrug Resistant Bacteria. Nanomaterials, 12(14), 2469. https://doi.org/10.3390/nano12142469