Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Geometry and Adsorption Energy
3.2. AIM and NBO Analyses
3.3. Molecular Orbital Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolkoff, P. Volatile organic compounds. Indoor Air Suppl. 1995, 3, 1–73. [Google Scholar]
- Koppmann, R. Volatile Organic Compounds in the Atmosphere; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.I.; Ghoshal, A.K. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Parmar, G.R.; Rao, N. Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 2008, 39, 41–78. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Kang, D.; Aneja, V.P. Volatile organic compounds in some urban locations in United States. Chemosphere 2002, 47, 863–882. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G. A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem. J. 2010, 95, 127–139. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Sun, L.; Zhang, Q.; Mao, H. Emissions of volatile organic compounds (VOCs) from gasoline-and liquified natural gas (LNG)-fueled vehicles in tunnel studies. Atmos. Environ. 2020, 234, 117626. [Google Scholar] [CrossRef]
- Ly, B.-T.; Kajii, Y.; Shoji, K.; Van, D.-A.; Nghiem, T.-D.; Sakamoto, Y. Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi. Chemosphere 2020, 254, 126749. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.; Kim, M.-G.; Myung, S.-W.; Baik, Y.K.; Lee, K.-B.; Song, H.-S.; Kwak, M.-J.; Kim, S. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study. J. Hazard. Mater. 2020, 393, 122381. [Google Scholar] [CrossRef] [PubMed]
- Mehlen, P.; Puisieux, A. Metastasis: A question of life or death. Nat. Rev. Cancer 2006, 6, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, L.; Li, J.; Wang, Y.; Wang, G.; Wang, J.; Hao, Z. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin. Sci. Bull. 2013, 58, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.K.; Saini, N.; Yadav, V.B. Recent trends of volatile organic compounds in ambient air and its health impacts: A review. Int. J. Technol. Res. Eng. 2014, 1, 667. [Google Scholar]
- Wang, P.; Chen, Y.; Hu, J.; Zhang, H.; Ying, Q. Attribution of tropospheric ozone to NOx and VOC emissions: Considering ozone formation in the transition regime. Environ. Sci. Technol. 2018, 53, 1404–1412. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- El-Metwally, D.; Chain, K.; Stefanak, M.P.; Alwis, U.; Blount, B.C.; LaKind, J.S.; Bearer, C.F. Urinary metabolites of volatile organic compounds of infants in the neonatal intensive care unit. Pediatric Res. 2018, 83, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh, Y.; Teiri, H.; Nazmara, S.; Parseh, I. Environmental and biological monitoring of exposures to VOCs in a petrochemical complex in Iran. Environ. Sci. Pollut. Res. 2018, 25, 6656–6667. [Google Scholar] [CrossRef]
- Qian, X.; Wan, Y.; Wang, A.; Xia, W.; Yang, Z.; He, Z.; Xu, S. Urinary metabolites of multiple volatile organic compounds among general population in Wuhan, central China: Inter-day reproducibility, seasonal difference, and their associations with oxidative stress biomarkers. Environ. Pollut. 2021, 289, 117913. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): Poly (styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443–8450. [Google Scholar] [CrossRef]
- Vainio, H.; Hemminki, K.; Elovaara, E. Toxicity of styrene and styrene oxide on chick embryos. Toxicology 1977, 8, 319–325. [Google Scholar] [CrossRef]
- Aschengrau, A.; Rogers, S.; Ozonoff, D. Perchloroethylene-contaminated drinking water and the risk of breast cancer: Additional results from Cape Cod, Massachusetts, USA. Environ. Health Perspect. 2003, 111, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Vlaanderen, J.; Straif, K.; Pukkala, E.; Kauppinen, T.; Kyyrönen, P.; Martinsen, J.I.; Kjaerheim, K.; Tryggvadottir, L.; Hansen, J.; Sparén, P. Occupational exposure to trichloroethylene and perchloroethylene and the risk of lymphoma, liver, and kidney cancer in four Nordic countries. Occup. Environ. Med. 2013, 70, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Ali Mansoori, G.; Bastami, T.R.; Ahmadpour, A.; Eshaghi, Z. Environmental application of nanotechnology. Annu. Rev. Nano Res. 2008, 2, 439–493. [Google Scholar]
- Yoosefian, M.; Fouladi, M.; Atanase, L.I. Molecular Dynamics Simulations of Docetaxel Adsorption on Graphene Quantum Dots Surface Modified by PEG-b-PLA Copolymers. Nanomaterials 2022, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Sargazi-Avval, H.; Yoosefian, M.; Ghaffari-Moghaddam, M.; Khajeh, M.; Bohlooli, M. Potential applications of armchair, zigzag, and chiral boron nitride nanotubes as a drug delivery system: Letrozole anticancer drug encapsulation. Appl. Phys. A 2021, 127, 1–7. [Google Scholar] [CrossRef]
- Awasthi, G.P.; Bhattarai, D.P.; Maharjan, B.; Kim, K.-S.; Park, C.H.; Kim, C.S. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. J. Ind. Eng. Chem. 2019, 72, 265–272. [Google Scholar] [CrossRef]
- Changsuphan, A.; Wahab, M.I.B.; Oanh, N.T.K. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chem. Eng. J. 2012, 181, 215–221. [Google Scholar] [CrossRef]
- Lemus, J.; Martin-Martinez, M.; Palomar, J.; Gomez-Sainero, L.; Gilarranz, M.A.; Rodriguez, J.J. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chem. Eng. J. 2012, 211, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Šuligoj, A.; Štangar, U.L.; Ristić, A.; Mazaj, M.; Verhovšek, D.; Tušar, N.N. TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Appl. Catal. B Environ. 2016, 184, 119–131. [Google Scholar] [CrossRef]
- Cao, M.; Wu, D.; Yoosefian, M.; Sabaei, S.; Jahani, M. Comprehensive study of the encapsulation of Lomustine anticancer drug into single walled carbon nanotubes (SWCNTs): Solvent effects, molecular conformations, electronic properties and intramolecular hydrogen bond strength. J. Mol. Liq. 2020, 320, 114285. [Google Scholar] [CrossRef]
- Yoosefian, M.; Etminan, N. Leucine/Pd-loaded (5, 5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein. Amino Acids 2018, 50, 653–661. [Google Scholar] [CrossRef]
- Yoosefian, M.; Rahmanifar, E.; Etminan, N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 434–446. [Google Scholar] [CrossRef] [Green Version]
- Yoosefian, M.; Etminan, N.; Juan, A.; Mirhaji, E. Ultra-low concentration protein detection based on phenylalanine–Pd/SWCNT as a high sensitivity nanoreceptor. RSC Adv. 2020, 10, 2650–2660. [Google Scholar] [CrossRef] [Green Version]
- Yoosefian, M.; Raissi, H.; Mola, A. The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: A DFT study. Sens. Actuators B Chem. 2015, 212, 55–62. [Google Scholar] [CrossRef]
- Zhang, T.; Mubeen, S.; Myung, N.V.; Deshusses, M.A. Recent progress in carbon nanotube-based gas sensors. Nanotechnology 2008, 19, 332001. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, J.; Han, J.; Ng, H.-T.; Binder, C.; Partridge, C.; Meyyappan, M. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 2004, 391, 344–348. [Google Scholar] [CrossRef]
- Sippel-Oakley, J.; Wang, H.-T.; Kang, B.S.; Wu, Z.; Ren, F.; Rinzler, A.G.; Pearton, S.J. Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology 2005, 16, 2218. [Google Scholar] [CrossRef]
- Yoosefian, M. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube. Appl. Surf. Sci. 2017, 392, 225–230. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar] [CrossRef]
- Glendening, E.; Reed, A.; Carpenter, J.; Weinhold, F. NBO, 3.1st ed.; Gaussian Inc.: Pittsburg, PA, USA, 2003. [Google Scholar]
- Bader, R.F. A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314–7323. [Google Scholar] [CrossRef]
- Yoosefian, M.; Sabaei, S.; Etminan, N. Encapsulation efficiency of single-walled carbon nanotube for Ifosfamide anti-cancer drug. Comput. Biol. Med. 2019, 114, 103433. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
Compound | Etot | DP | Eads |
---|---|---|---|
ACN | −3568.42 | 3.88 | - |
STY | −8319.73 | 0.11 | - |
PCE | −51,799.97 | 0.00 | - |
Pd/SWCNT-V | −266,131.38 | 4.58 | - |
ACN-Pd/SWCNT-V | −269,700.73 | 9.07 | −0.94 |
STY-Pd/SWCNT-V | −274,452.38 | 8.75 | −1.27 |
PCE-Pd/SWCNT-V | −317,931.89 | 8.19 | −0.54 |
ACN | Before | After | % Changes | PCE | Before | After | % Changes | STY | Before | After | % Changes |
---|---|---|---|---|---|---|---|---|---|---|---|
Pd–C | 1.968 | 1.972 | 0.188 | Pd–C | 1.968 | 1.981 | 0.652 | Pd–C | 1.968 | 1.970 | 0.105 |
Pd–C | 2.047 | 2.033 | −0.685 | Pd–C | 2.047 | 2.148 | 4.901 | Pd–C | 2.047 | 2.026 | −1.045 |
Pd–C | 1.968 | 1.972 | 0.190 | Pd–C | 1.968 | 2.021 | 2.706 | Pd–C | 1.968 | 2.076 | 5.499 |
N–C | 1.139 | 1.156 | 1.528 | C=C | 1.355 | 1.410 | 4.053 | C=C | 1.355 | 1.324 | −2.286 |
N–C–C | 179.987 | 179.886 | −0.056 | C–Cl | 1.760 | 1.822 | 3.516 | C–C | 1.540 | 1.484 | −3.644 |
Cl–C–Cl | 120.000 | 110.797 | −7.669 | C=C–C | 120.000 | 126.665 | 5.555 |
ACN | ρ (r) | ∇2ρ (rc) | V (rc) | PCE | ρ (r) | ∇2ρ (rc) | V (rc) | STY | ρ (r) | ∇2ρ (rc) | V (rc) |
---|---|---|---|---|---|---|---|---|---|---|---|
Pd–C | 3.424 | 4.159 | −5.290 | Pd–C | 3.569 | 5.032 | −5.715 | Pd–C | 3.169 | 3.025 | −4.593 |
Pd–C | 2.997 | 3.242 | −4.227 | Pd–C | 3.305 | 8.204 | −5.343 | Pd–C | 3.547 | 4.352 | −5.604 |
Pd–C | 3.724 | 5.046 | −6.101 | Pd–C | 2.595 | 9.914 | −3.938 | Pd–C | 3.552 | 4.352 | −5.617 |
N–C (ACN) | 12.526 | −15.197 | −41.648 | C=C (PCE) | 7.681 | −21.102 | −17.240 | C=C (STY) | 9.180 | −29.096 | −23.139 |
N(ACN)–Pd | 1.564 | 8.878 | −2.078 | C(PCE)–Pd | 2.636 | 7.559 | −3.826 | C–C (STY) | 6.824 | −18.822 | −14.030 |
C(PCE)–Pd | 2.258 | 7.986 | −3.133 | C(STY)–Pd | 0.721 | 2.132 | −0.546 |
Compound | εH | εL | EG | η | μ |
---|---|---|---|---|---|
Pd/SWCNT-V | −5.25 | −0.70 | 4.55 | 2.28 | −2.97 |
ACN-Pd/SWCNT-V | −5.11 | −0.55 | 4.56 | 2.28 | −2.83 |
PCE-Pd/SWCNT-V | −5.69 | −1.13 | 4.57 | 2.28 | −3.41 |
STY-Pd/SWCNT-V | −5.29 | −0.35 | 4.94 | 2.47 | −2.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoosefian, M.; Ayoubi, E.; Atanase, L.I. Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study. Nanomaterials 2022, 12, 2572. https://doi.org/10.3390/nano12152572
Yoosefian M, Ayoubi E, Atanase LI. Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study. Nanomaterials. 2022; 12(15):2572. https://doi.org/10.3390/nano12152572
Chicago/Turabian StyleYoosefian, Mehdi, Elaheh Ayoubi, and Leonard Ionut Atanase. 2022. "Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study" Nanomaterials 12, no. 15: 2572. https://doi.org/10.3390/nano12152572
APA StyleYoosefian, M., Ayoubi, E., & Atanase, L. I. (2022). Palladium-Doped Single-Walled Carbon Nanotubes as a New Adsorbent for Detecting and Trapping Volatile Organic Compounds: A First Principle Study. Nanomaterials, 12(15), 2572. https://doi.org/10.3390/nano12152572