Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wood Specimens
2.1.2. Titanium Dioxide
2.1.3. Specimens’ Preparation. Binders and Concentrations of TiO2 in the Mixtures
2.1.4. Accelerated Aging Test
- 1st step—(24 h) Temperature 45 ± 3 °C, Water-Spray (off), UV (off)
- 2nd step—sub-cycle (A + B)—3 h
- ○
- A (2.5 h) Temperature = 60 ± 3 °C, UV Irradiance = 0.89 W/m2 at 340 nm
- ○
- (B 0.5 h) Temperature 20 ± 1 °C, Water-Spray (on), UV (off)
- Sub-cycle (A + B): 48 sub-cycles 3 h of one, i.e., together 144 h
2.2. Methods of Characterization
2.2.1. Sample Preparation
2.2.2. UV-VIS Absorption Spectra of TiO2 Planar Particles
2.2.3. Macro X-ray Fluorescence (MAXRF)
2.2.4. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
2.2.5. Transmission Electron Microscopy (TEM)
3. Results and Discussion
3.1. UV-VIS Absorption Spectra of TiO2 Planar Particles
3.2. X-ray Intensity Maps
3.3. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
3.3.1. Fourier Transform Infrared Spectroscopy of Specimens with Water as Binder
3.3.2. Fourier Transform Infrared Spectroscopy of Specimens with Acrylic Resin as Binder
3.3.3. Fourier Transform Infrared Spectroscopy of Specimens with Water Glass as Binder
3.3.4. Photodegradation Parameters
3.4. Transmission Electron Microscopic (TEM) Study of Beech and Pine Wood’s Cell Walls Ultrastructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, L.A. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. Iawa J. 2019, 40, 645–672. [Google Scholar] [CrossRef]
- Côté, W.A. Wood Ultrastructure in Relation to Chemical Composition. In The Structure, Biosynthesis, and Degradation of Wood; Loewus, F.A., Runeckles, V.C., Eds.; Springer: Boston, MA, USA, 1977; pp. 1–44. [Google Scholar]
- Jirous-Rajkovic, V.; Turkulin, H.; Miller, E.R. Depth profile of UV-induced wood surface degradation. Surf. Coat. Int. Part B Coat. Trans. 2004, 87, 241–247. [Google Scholar] [CrossRef]
- Teng, T.J.; Arip, M.N.M.; Sudesh, K.; Nemoikina, A.; Jalaludin, Z.; Ng, E.P.; Lee, H.L. Conventional Technology and Nanotechnology in Wood Preservation: A Review. Bioresources 2018, 13, 9220–9252. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, P.; Pepin, S. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings 2021, 11, 1514. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Bikiaris, D.N.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials 2019, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Zuccheri, T.; Colonna, M.; Stefanini, I.; Santini, C.; Di Gioia, D. Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Materials 2013, 6, 3270–3283. [Google Scholar] [CrossRef] [PubMed]
- Harandi, D.; Ahmadi, H.; Achachluei, M.M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int. Biodeter. Biodegr. 2016, 108, 142–148. [Google Scholar] [CrossRef]
- Zanatta, P.; Lazarotto, M.; de Cademartori, P.H.G.; Cava, S.D.; Moreira, M.L.; Gatto, D.A. The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood. Maderas-Ciencia Y Tecnol. 2017, 19, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Goffredo, G.B.; Citterio, B.; Biavasco, F.; Stazi, F.; Barcelli, S.; Munafo, P. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. J. Cult. Herit. 2017, 27, 125–136. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Moradi-Malek, B.; Kookandeh, M.G.; Bibalan, O.F. Effects of silver and copper nanoparticles in particleboard to control Trametes versicolor fungus. Int. Biodeter. Biodegr. 2014, 94, 69–72. [Google Scholar] [CrossRef]
- Mantanis, G.; Terzi, E.; Kartal, S.N.; Papadopoulos, A.N. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeter. Biodegr. 2014, 90, 140–144. [Google Scholar] [CrossRef]
- Sun, Q.F.; Yu, H.P.; Liu, Y.X.; Li, J.A.; Lu, Y.; Hunt, J.F. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung 2010, 64, 757–761. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Yang, F.; Wang, W. The Effect of Antibacterial and Waterproof Coating Prepared From Hexadecyltrimethoxysilane and Nano-Titanium Dioxide on Wood Properties. Front. Mater. 2021, 8. [Google Scholar] [CrossRef]
- Godnjavec, J.; Znoj, B.; Venturini, P.; Znidarsic, A. The application of rutile nano-crystalline titanium dioxide as UV absorber. Inform. Midem. 2010, 40, 6–9. [Google Scholar]
- Veronovski, N.; Verhovsek, D.; Godnjavec, J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci. Technol. 2013, 47, 317–328. [Google Scholar] [CrossRef]
- Sun, Q.; Lu, Y.; Zhang, H.; Zhao, H.; Yu, H.; Xu, J.; Fu, Y.; Yang, D.; Liu, Y. Hydrothermal fabrication of rutile TiO2 submicrospheres on wood surface: An efficient method to prepare UV-protective wood. Mater. Chem. Phys. 2012, 133, 253–258. [Google Scholar] [CrossRef]
- Rassam, G.; Abdi, Y.; Abdi, A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J. Exp. Nanosci. 2012, 7, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, S.; Chang, H.; Liu, J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood Fiber Sci. 2014, 46, 109–117. [Google Scholar]
- Zheng, R.B.; Tshabalala, M.A.; Li, Q.Y.; Wang, H.Y. Photocatalytic Degradation of Wood Coated with a Combination of Rutile TiO2 Nanostructures and Low-Surface Free-Energy Materials. Bioresources 2016, 11, 2393–2402. [Google Scholar] [CrossRef] [Green Version]
- Panek, M.; Oberhofnerova, E.; Zeidler, A.; Sedivka, P. Efficacy of Hydrophobic Coatings in Protecting Oak Wood Surfaces during Accelerated Weathering. Coatings 2017, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Pánek, M.; Oberhofnerová, E.; Hýsek, Š.; Šedivka, P.; Zeidler, A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials 2018, 11, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jnido, G.; Ohms, G.; Viol, W. Deposition of TiO2 Thin Films on Wood Substrate by an Air Atmospheric Pressure Plasma Jet. Coatings 2019, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Zeljko, M.; Bulatovic, V.O.; Blazic, R.; Blagojevic, S.L. The development of eco-friendly UV-protective polyacrylate/rutile TiO2 coating. J. Appl. Polym. Sci. 2022, 139. [Google Scholar] [CrossRef]
- Forsthuber, B.; Müller, U.; Teischinger, A.; Grüll, G. Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polym. Degrad. Stabil. 2013, 98, 1329–1338. [Google Scholar] [CrossRef]
- Svora, P.; Ecorchard, P.; Pližingrová, E.; Komárková, B.; Svorová Pawełkowicz, S.; Murafa, N.; Maříková, M.; Smržová, D.; Wagner, B.; Machálková, A.; et al. Influence of Inorganic Bases on the Structure of Titanium Dioxide-Based Microsheets. Acs Omega 2020, 5, 23703–23717. [Google Scholar] [CrossRef]
- Schaller, C.; Rogez, D. New approaches in wood coating stabilization. J. Coat. Technol. Res. 2007, 4, 401–409. [Google Scholar] [CrossRef]
- Daniel, G. Chapter 15—Microscope Techniques for Understanding Wood Cell Structure and Biodegradation. In Secondary Xylem Biology; Kim, Y.S., Funada, R., Singh, A.P., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 309–343. [Google Scholar]
- Reza, M.; Kontturi, E.; Jääskeläinen, A.-S.; Vuorinen, T.; Ruokolainen, J. Transmission electron microscopy for wood and fiber analysis−A review. BioResources 2015, 10, 6230–6261. [Google Scholar] [CrossRef]
- Zhou, X.; Ding, D.; Ma, J.; Ji, Z.; Zhang, X.; Xu, F. Ultrastructure and topochemistry of plant cell wall by transmission electron microscopy. In The Transmission Electron Microscope–Theory and Applications; InTech: London, UK, 2015; pp. 285–306. [Google Scholar]
- Reinprecht, L. Ochrana Dreva; Technická univerzita vo Zvolene: Zvolen, Slovacia, 2008. [Google Scholar]
- EN 113-1:2020; Durability of Wood and Wood-Based Products—Test Method against Wood Destroying Basidiomycetes—Part 1: Assessment of Biocidal Efficacy of Wood Preservatives. SIST: Ljubljana, Slovenia, 2020.
- EN 839:2014; Wood Preservatives—Determination Of The Protective Effectiveness against Wood Destroying Basidiomycetes—Application By Surface Treatment. SIST: Ljubljana, Slovenia, 2014.
- EN 252:2014; Field Test Method for Determining The Relative Protective Effectiveness of a Wood Preservative in Ground Contact. SIST: Ljubljana, Slovenia, 2014.
- EN 927-3:2019; Paints And Varnishes—Coating Materials And Coating Systems for Exterior Wood—Part 3: Natural Weathering Test. SIST: Ljubljana, Slovenia, 2019.
- EN 927-6:2018; Paints and Varnishes—Coating Materials and Coating Systems for Exterior Wood—Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water. SIST: Ljubljana, Slovenia, 2018.
- Amorim, S.M.; Suave, J.; Andrade, L.; Mendes, A.M.; Jose, H.J.; Moreira, R. Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres. Prog. Org. Coat. 2018, 118, 48–56. [Google Scholar] [CrossRef]
- Subrt, J.; Pulisova, P.; Bohacek, J.; Bezdicka, P.; Plizingrova, E.; Volfova, L.; Kupcik, J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mater. Res. Bull. 2014, 49, 405–412. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under UV irradiation: A lignin characterization. J. Photoch. Photobio. B 2016, 158, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Ozgenc, O.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. ATR-FTIR spectroscopic analysis of the thermally modified wood degraded by rot fungi. Drewno 2018, 61, 91–105. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials 2020, 13, 4573. [Google Scholar] [CrossRef] [PubMed]
- Bari, E.; Ohno, K.; Yilgor, N.; Singh, A.P.; Morrell, J.J.; Pizzi, A.; Ghanbary, M.A.T.; Ribera, J. Characterizing Fungal Decay of Beech Wood: Potential for Biotechnological Applications. Microorganisms 2021, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Dirckx, O.; Triboulot-Trouy, M.; Merlin, A.; Deglise, X. Modifications de la couleur du bois d’Abies grandis exposé à la lumière solaire. Ann. For. Sci. 1992, 49, 425–447. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Požgaj, A.C.D.; Kurjatko, S.; Babiak, M. Štruktúra a Vlastnosti Dreva; Príroda: Bratislava, Slovakia, 1993. [Google Scholar]
- Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B 2003, 69, 97–105. [Google Scholar] [CrossRef]
Binder | Concentrations (wt. %) | ||
---|---|---|---|
H2O | 0.5 | 1.5 | 3 |
Potassium water glass (MM 1.6 by Vodnisklo a.s.) | 0.5 | 1.5 | 3 |
Acrylic water dispersion (Primal® SF016 by Rohm&Haas) | 0.5 | 1.5 | 3 |
Literature Band (cm−1) | Observed Band (cm−1) | Compound or Chemical Group |
---|---|---|
806, 812, 813 | 806 | C-C deformation and stretching vibration in mannans [45] |
- | 827–831 | Observed in beech wood only |
895–897 | 893–897 | C-H deformation in cellulose [40,44] C1-H group vibration in cellulose and hemicelluloses [41,46] |
1026, 1029, 1030, 1031, 1033 | 1024, 1028, 1030–1032 | C-O stretching vibration in cellulose [46], hemicelluloses [40,41], C=O stretching vibration in cellulose, hemicelluloses, and lignin [44] C-O of primary alcohol, C-H in guaiacyl [46] |
1050–51, 1052, 1059 | 1045, 1051, 1053 | C-O stretching vibration in cellulose [46] and hemicelluloses [40] |
1097 | 1099 | Aromatic C-H in-plane deformation and C=O stretch O-H association band in cellulose and hemicelluloses [44] |
1104, 1109, 1115 | 1101, 1103 | Aromatic skeletal vibration and C-O stretch [40] C-O and O-H stretching vibration [45] |
1134, 1152, 1155, 1156, 1157, 1160, 1163, 1165 | 1155–1157 | C-O-C vibration in cellulose and hemicelluloses [40,41,44] and lignin [45] |
1200, 1208 | 1201 | O-H deformation in (1200 cm−1) cellulose [46] and CH2 and O-H deformation (1208 cm−1) hemicelluloses [45] |
1222, 1230, 1233, 1234 | 1230–1236 | C=O stretching vibrations in lignin, acetyl and carboxyl vibrations in xylans [44] C-O stretch in lignin [45] and xylan [41] Syringyl ring [41] |
1252, 1260, 1265, 1266, 1267, 1268, 1280 | 1262–1265 | Guaiacyl ring breathing [41] C-O stretch in lignin and mannans [40,41,45] C-O linkage in guaiacyl aromatic methoxyl groups [41] |
1309, 1313, 1314, 1316–1326, 1318 | 1315–1317, 1327–1329 | C-H vibration in cellulose [40,41] CH2 wagging in cellulose [46] C1-O vibration in syringyl derivatives [41,44] CH2 and O-H deformations in cellulose and hemicelluloses [45] |
1330, 1333, 1335 | 1335 shoulder | CH2 wagging [45] and O-H deformation in cellulose [45,46] |
1367, 1368–1372, 1375 | 1369–1371 | C-H deformation in cellulose [46] and hemicelluloses [40,41,44] and lignin [45] |
1408, 1417, 1419, 1421, 1422–1424, 1425, 1430 | 1419–1421 | C-H asymmetric deformation in –OCH3 [44,46] Aromatic skeletal vibrations [44] C-H deformation in lignin [46] and carbohydrates [41,44] CH2 and CH3 deformation in cellulose, lignin and hemicelluloses [45] |
1451-56, 1452, 1455, 1458, 1460, 1462, 1463 | 1452–1462 | C-H deformation in lignin [40,46] and carbohydrates [41] CH2 deformation vibrations in lignin and xylans [44] CH2 and CH3 deformation in cellulose, lignin and xylans [45] |
1502, 1504, 1506–1509, 1510 | 1504–1508 | Aromatic skeletal vibration in lignin [40,41,44,46] C=C stretching of the aromatic ring in guaiacyl [44,45] |
- | 1541 | C=O stretching vibration |
1592, 1593, 1595, 1598, 1605, 1606, 1610 | 1592 | C=C stretching of the aromatic ring in syringyl [44,45] Aromatic skeletal vibrations and C=O stretching [44,46] Conjugated C-O stretching [41] |
1615 | - | C=O stretching conjugated to double bond [40] |
1635, 1640 | 1639–1645 | H-O-H deformation vibration of absorbed water [44,46] C=O stretching in lignin [44,45] and in cellulose [46] |
1720, 1730–1732, 1734 | 1730–1732 | C=O stretch of acetyl or carboxylic acid in hemicelluloses [40] C=O stretching in xylans (unconjugated) [41,44] |
2800–3000 | 2850, 2883, 2893, 2895, 2916–2918, 2920, 2924–2928 | C-H stretching [44,45] |
3300–4000 | 3282–3304, 3334, 3342–3346 | Strong broad O-H stretching absorption band [45] |
Sample | I1510/I1375 | I1316/I1335 |
---|---|---|
native_beech_wood | 0.62 | 0.94 |
UV-irradated_beech_wood_0%TiO2 | 0.09 | 0.87 |
beech_wood_3%TiO2 in water | 0.49 | 0.93 |
UV-irradiated_beech_wood_3%TiO2 in water | 0.09 | 1.43 |
beech_wood_3%TiO2 in acrylic | 0.14 | 1.09 |
UV-irradiated_beech_wood_3%TiO2 in acrylic | 0.09 | 1.09 |
beech_wood_3%TiO2 in water glass | 3.32 | 0.79 |
UV-irradiated_beech_wood_3%TiO2 in water glass | 0.17 | 1.12 |
native_pine_wood | 0.87 | 1.07 |
UV-irradiated_pine_wood_0%TiO2 | 0.08 | 1.12 |
pine_wood_3%TiO2 in water | 0.63 | 1.05 |
UV-irradiated_pine_wood_3%TiO2 in water | 0.07 | 1.11 |
pine_wood_3%TiO2 in acrylic | 0.14 | 1.16 |
UV-irradiated_pine_wood_3%TiO2 in acrylic | 0.10 | 1.08 |
pine_wood_3%TiO2 in water glass | 3.49 | 0.87 |
UV-irradiated_pine_wood_3%TiO2 in water glass | 0.15 | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svora, P.; Svorová Pawełkowicz, S.; Ecorchard, P.; Plocek, J.; Schieberová, A.; Prošek, Z.; Ptáček, P.; Pošta, J.; Targowski, P.; Kuklík, P.; et al. Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure. Nanomaterials 2022, 12, 2678. https://doi.org/10.3390/nano12152678
Svora P, Svorová Pawełkowicz S, Ecorchard P, Plocek J, Schieberová A, Prošek Z, Ptáček P, Pošta J, Targowski P, Kuklík P, et al. Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure. Nanomaterials. 2022; 12(15):2678. https://doi.org/10.3390/nano12152678
Chicago/Turabian StyleSvora, Petr, Sylwia Svorová Pawełkowicz, Petra Ecorchard, Jiří Plocek, Alena Schieberová, Zdeněk Prošek, Petr Ptáček, Jan Pošta, Piotr Targowski, Petr Kuklík, and et al. 2022. "Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure" Nanomaterials 12, no. 15: 2678. https://doi.org/10.3390/nano12152678
APA StyleSvora, P., Svorová Pawełkowicz, S., Ecorchard, P., Plocek, J., Schieberová, A., Prošek, Z., Ptáček, P., Pošta, J., Targowski, P., Kuklík, P., & Jakubec, I. (2022). Study of Interactions between Titanium Dioxide Coating and Wood Cell Wall Ultrastructure. Nanomaterials, 12(15), 2678. https://doi.org/10.3390/nano12152678