Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dipole-Dipole Coupling Model
2.2. Larger Systems
2.3. Machine Learning Scheme
3. Results
3.1. Indistinguishability of Dipole Coupled Emitters
3.2. Larger Systems
3.3. Machine Learning Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monroe, C.; Meekhof, D.M.; King, B.E.; Itano, W.M.; Wineland, D.J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 1995, 75, 4714. [Google Scholar] [CrossRef] [PubMed]
- Makhlin, Y.; Scöhn, G.; Shnirman, A. Josephson-junction qubits with controlled couplings. Nature 1999, 398, 305–307. [Google Scholar] [CrossRef]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’brien, J.L. Silica-on-silicon waveguide quantum circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Bunandar, D.; Lentine, A.; Lee, C.; Cai, H.; Long, C.M.; Boynton, N.; Martinez, N.; DeRose, C.; Chen, C.; Grein, M. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 2018, 8, 021009. [Google Scholar] [CrossRef]
- Lago-Rivera, D.; Grandi, S.; Rakonjac, J.V.; Seri, A.; de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 2021, 594, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [PubMed]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Santori, C.; Fu, K.M.; Barclay, P.E.; Beausoleil, R.G.; Linget, H.; Roch, J.F.; Treussart, F. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 2009, 80, 115202. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.Y.; Matsuda, N. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2022, 4, 194–208. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.F.; Liu, G.B.; Li, H.M. Ultra-broadband multilayer absorber with the lumped resistors and solid-state plasma. Results Phys. 2019, 12, 917–924. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Su, Y.; Zheng, Y.; Tang, W.; Yang, C.; Tang, H.; Qu, L.; Li, Y.; Zhao, Y. Simple vanilla derivatives for long-lived room-temperature polymer phosphorescence as invisible security inks. Research 2021, 2021, 8096263. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xia, H.; Xu, J.; Sun, X.; Liu, X. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362. [Google Scholar] [CrossRef] [PubMed]
- Juska, G.; Dimastrodonato, V.; Mereni, L.O.; Gocalinska, A.; Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 2013, 7, 527–531. [Google Scholar] [CrossRef]
- Gérard, J.M.; Sermage, B.; Gayral, B.; Legrand, B.; Costard, E.; Thierry-Mieg, V. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 1998, 81, 1110. [Google Scholar] [CrossRef]
- Hennessy, K.; Badolato, A.; Winger, M.; Gerace, D.; Atatüre, M.; Gulde, S.; Fält, S.; Hu, E.L.; Imamoğlu, A. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 2007, 445, 896–899. [Google Scholar] [CrossRef]
- Wang, H.; Duan, Z.C.; Li, Y.H.; Chen, S.; Li, J.P.; He, Y.M.; Chen, M.C.; He, Y.; Ding, X.; Peng, C.Z.; et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 2016, 116, 213601. [Google Scholar] [CrossRef]
- He, Y.M.; He, Y.; Wei, Y.J.; Wu, D.; Atatüre, M.; Schneider, C.; Höfling, S.; Kamp, M.; Lu, C.Y.; Pan, J.W. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 2013, 8, 213–217. [Google Scholar] [CrossRef]
- Somaschi, N.; Giesz, V.; De Santis, L.; Loredo, J.C.; Almeida, M.P.; Hornecker, G.; Portalupi, S.L.; Grange, T.; Anton, C.; Demory, J.; et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 2016, 10, 340–345. [Google Scholar] [CrossRef]
- Borri, P.; Langbein, W.; Schneider, S.; Woggon, U.; Sellin, R.L.; Ouyang, D.; Bimberg, D. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 2001, 87, 157401. [Google Scholar] [CrossRef]
- Bayer, M.; Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots. Phys. Rev. B 2002, 65, 041308. [Google Scholar] [CrossRef]
- Berthelot, A.; Favero, I.; Cassabois, G.; Voisin, C.; Delalande, C.; Roussignol, P.; Ferreira, R.; Gérard, J.M. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2006, 2, 759–764. [Google Scholar] [CrossRef]
- Mirin, R.P. Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot. Appl. Phys. Lett. 2004, 84, 1260–1262. [Google Scholar] [CrossRef]
- Dusanowski, Ł.; Syperek, M.; Misiewicz, J.; Somers, A.; Hoefling, S.; Kamp, M.; Reithmaier, J.P.; Sęk, G. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl. Phys. Lett. 2016, 108, 163108. [Google Scholar] [CrossRef]
- Yu, P.; Li, Z.; Wu, T.; Wang, Y.T.; Tong, X.; Li, C.F.; Wang, Z.; Wei, S.H.; Zhang, Y.; Liu, H.; et al. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano 2019, 13, 13492–13500. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, Y.; Holmes, M.J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309. [Google Scholar] [CrossRef]
- Bylander, J.; Robert-Philip, I.; Abram, I. Interference and correlation of two independent photons. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2003, 22, 295–301. [Google Scholar] [CrossRef]
- Guimbao, J.; Sanchis, L.; Weituschat, L.; Manuel Llorens, J.; Song, M.; Cardenas, J.; Aitor Postigo, P. Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon Indistinguishability at Room Temperature. ACS Photonics 2022, 9, 1926–1935. [Google Scholar] [CrossRef]
- Guimbao, J.; Weituschat, L.M.; Montolio, J.L.; Postigo, P.A. Enhancement of the indistinguishability of single photon emitters coupled to photonic waveguides. Opt. Express 2021, 29, 21160–21173. [Google Scholar] [CrossRef]
- Grange, T.; Hornecker, G.; Hunger, D.; Poizat, J.P.; Gérard, J.M.; Senellart, P.; Auffèves, A. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 2015, 114, 193601. [Google Scholar] [CrossRef]
- Choi, H.; Zhu, D.; Yoon, Y.; Englund, D. Cascaded cavities boost the indistinguishability of imperfect quantum emitters. Phys. Rev. Lett. 2019, 122, 183602. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Chen, Y.; Ryou, A.; Sevilla, C.G.; Xu, P.; Majumdar, A. Improving indistinguishability of single photons from colloidal quantum dots using nanocavities. ACS Photonics 2019, 6, 3166–3173. [Google Scholar] [CrossRef]
- Ota, Y.; Iwamoto, S.; Kumagai, N.; Arakawa, Y. Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett. 2011, 107, 233602. [Google Scholar] [CrossRef] [PubMed]
- Shlesinger, I.; Senellart, P.; Lanco, L.; Greffet, J.J. Time-frequency encoded single-photon generation and broadband single-photon storage with a tunable subradiant state. Optica 2021, 8, 95–105. [Google Scholar] [CrossRef]
- Shlesinger, I.; Senellart, P.; Lanco, L.; Greffet, J.J. Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states. Phys. Rev. A 2018, 98, 013813. [Google Scholar] [CrossRef]
- Schilder, N.J.; Sauvan, C.; Sortais, Y.R.P.; Browaeys, A.; Greffet, J.J. Near-resonant light scattering by a subwavelength ensemble of identical atoms. Phys. Rev. Lett. 2020, 124, 073403. [Google Scholar] [CrossRef] [PubMed]
- Ficek, Z.; Tanas, R.; Kielich, S. Cooperative effects in the spontaneous emission from two non-identical atoms. Opt. Acta 1986, 33, 1149–1160. [Google Scholar]
- Lehmberg, R.H. Radiation from an N-atom system. I. General formalism. Phys. Rev. A 1970, 2, 883. [Google Scholar] [CrossRef]
- Hettich, C.; Schmitt, C.; Zitzmann, J.; Kühn, S.; Gerhardt, I.; Sandoghdar, V. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 2002, 298, 385–389. [Google Scholar] [CrossRef]
- Vogl, T.; Campbell, G.; Buchler, B.C.; Lu, Y.; Lam, P.K. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 2018, 5, 2305–2312. [Google Scholar] [CrossRef]
- Schröder, T.; Trusheim, M.E.; Walsh, M.; Li, L.; Zheng, J.; Schukraft, M.; Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Nguyen, C.T.; et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun. 2017, 8, 15376. [Google Scholar] [CrossRef]
- Hail, C.U.; Höller, C.; Matsuzaki, K.; Rohner, P.; Renger, J.; Sandoghdar, V.; Poulikakos, D.; Eghlidi, H. Nanoprinting organic molecules at the quantum level. Nat. Commun. 2019, 10, 1880. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M.; Hawrylak, P.; Hinzer, K.; Fafard, S.; Korkusinski, M.; Wasilewski, Z.R.; Stern, O.; Forchel, A. Coupling and entangling of quantum states in quantum dot molecules. Science 2001, 291, 451–453. [Google Scholar] [CrossRef]
- Kim, H.; Kyhm, K.; Taylor, R.A.; Kim, J.S.; Song, J.D.; Park, S. Optical shaping of the polarization anisotropy in a laterally coupled quantum dot dimer. Light Sci. Appl. 2020, 9, 100. [Google Scholar] [CrossRef]
- Takagahara, T. Excitonic Structures and Optical Properties of Quantum Dots. In Semiconductor Quantum Dots; Springer: Berlin/Heidelberg, Germany, 2002; pp. 59–114. [Google Scholar]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, L.; Cryan, M.J.; Pozo, J.; Craddock, I.J.; Rarity, J.G. Ultrahigh Purcell factor in photonic crystal slab microcavities. Phys. Rev. B 2007, 76, 045118. [Google Scholar] [CrossRef]
- Sanchis, L.; Håkansson, A.; López-Zanón, D.; Bravo-Abad, J.; Sánchez-Dehesa, J. Integrated optical devices design by genetic algorithm. Appl. Phys. Lett. 2004, 84, 4460–4462. [Google Scholar] [CrossRef]
- Morgado-León, A.; Escuín, A.; Guerrero, E.; Yáñez, A.; Galindo, P.L.; Sanchis, L. Genetic Algorithms Applied to the Design of 3D Photonic Crystals. In Proceedings of the International Work-Conference on Artificial Neural Networks, Torremolinos, Spain, 8–10 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 291–298. [Google Scholar]
- Marques-Hueso, J.; Sanchis, L.; Cluzel, B.; de Fornel, F.; Martínez-Pastor, J.P. Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm. Appl. Phys. Lett. 2010, 97, 071115. [Google Scholar] [CrossRef]
- 3D Electromagnetic Simulator; Lumerical Inc.: Vancouver, BC, Canada, 2022.
- Neu, E.; Hepp, C.; Hauschild, M.; Gsell, S.; Fischer, M.; Sternschulte, H.; Steinmüller-Nethl, D.; Schreck, M.; Becher, C. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J. Phys. 2013, 15, 043005. [Google Scholar] [CrossRef]
- Englund, D.; Faraon, A.; Zhang, B.; Yamamoto, Y.; Vučković, J. Generation and transfer of single photons on a photonic crystal chip. Opt. Express 2007, 15, 5550–5558. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Chen, W.Y.; Chang, H.S.; Hsieh, T.P.; Chyi, J.I.; Hsu, T.M. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 2006, 96, 117401. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.S.; Husko, C.; Collins, M.J.; Lehoucq, G.; Xavier, S.; De Rossi, A.; Combrié, S.; Xiong, C.; Eggleton, B.J. Heralded single-photon source in a III–V photonic crystal. Opt. Lett. 2013, 38, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Krasnok, A.; Alu, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A. Enhanced Light-Matter Interaction in Two Dimensional Transition Metal Dichalcogenides. Rep. Prog. Phys. 2022, 85, 046401. [Google Scholar] [CrossRef]
- Liu, S.; Srinivasan, K.; Liu, J. Nanoscale Positioning Approaches for Integrating Single Solid-State Quantum Emitters with Photonic Nanostructures. Laser Photonics Rev. 2021, 15, 2100223. [Google Scholar] [CrossRef]
- Thon, S.M.; Rakher, M.T.; Kim, H.; Gudat, J.; Irvine, W.T.; Petroff, P.M.; Bouwmeester, D. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl. Phys. Lett. 2009, 94, 111115. [Google Scholar] [CrossRef]
- Liu, J.; Davanço, M.I.; Sapienza, L.; Konthasinghe, K.; De Miranda Cardoso, J.V.; Song, J.D.; Badolato, A.; Srinivasan, K. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 2017, 88, 023116. [Google Scholar] [CrossRef] [PubMed]
- Gschrey, M.; Schmidt, R.; Schulze, J.H.; Strittmatter, A.; Rodt, S.; Reitzenstein, S. Resolution and alignment accuracy of lowtemperature in situ electron beam lithography for nanophotonic device fabrication. J. Vac. Sci. Technol. B 2015, 33, 021603. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 2020, 14, 285–298. [Google Scholar] [CrossRef]
- Wan, N.H.; Lu, T.J.; Chen, K.C.; Walsh, M.P.; Trusheim, M.E.; De Santis, L.; Bersin, E.A.; Harris, I.B.; Mouradian, S.L.; Christen, I.R.; et al. Large-scale integration of near-indistinguishable artificial atoms in hybrid photonic circuits. arXiv 2019. Available online: https://arxiv.org/abs/1911.05265 (accessed on 16 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimbao, J.; Sanchis, L.; Weituschat, L.M.; Llorens, J.M.; Postigo, P.A. Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. Nanomaterials 2022, 12, 2800. https://doi.org/10.3390/nano12162800
Guimbao J, Sanchis L, Weituschat LM, Llorens JM, Postigo PA. Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. Nanomaterials. 2022; 12(16):2800. https://doi.org/10.3390/nano12162800
Chicago/Turabian StyleGuimbao, Joaquin, Lorenzo Sanchis, Lukas M. Weituschat, Jose M. Llorens, and Pablo A. Postigo. 2022. "Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters" Nanomaterials 12, no. 16: 2800. https://doi.org/10.3390/nano12162800
APA StyleGuimbao, J., Sanchis, L., Weituschat, L. M., Llorens, J. M., & Postigo, P. A. (2022). Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. Nanomaterials, 12(16), 2800. https://doi.org/10.3390/nano12162800