Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids
Abstract
:1. Introduction
2. Fabrication and Surface Functionalization
2.1. Bottom-Up Approach
2.2. Top-Down Approach
2.2.1. Microfluidization
2.2.2. Ball Milling
2.2.3. Sonication
2.2.4. Chemical, Hydrothermal, and Cryogenic Exfoliation
2.3. Surface Functionalization
3. Catalysts
3.1. Heterogeneous and Homogeneous Catalysts
3.2. Photocatalysts and Electrocatalysts
4. Materials for Biomedicine and Improvement of Quality of Life
4.1. Biocompatibility and Dose-Dependent Toxicity
4.2. Antibacterial and Antifungal Activity
4.3. Drug Delivery
4.4. Boron Neutron Capture Therapy
4.5. Tissue Engineering
4.6. Face Masks
4.7. Biosensors
4.8. Sponges and Membranes for Water Purification
4.9. Textile Materials
5. Composites
5.1. Metal Matrix Composites
5.2. Oxidation and Corrosion Protection of Metals and Alloys
5.3. Ceramic Matrix Composites
5.4. Polymer Matrix Composites
5.5. Magnetic Composites
6. Optical and Optoelectronic Devices
6.1. Quantum Dots, Single-Photon Emitters, and Devices
6.2. Photodetectors
7. Nanoelectronic, Tunnel, and Memory Devices
8. Energy Materials and Batteries
9. Additive to Liquid Lubricants
10. Aerogels and Iongels
11. Theoretical Insights
12. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Al matrix composites | AlMCs |
BE | Binding energy |
BNCT | Boron neutron capture therapy |
BNNPS | BN nanoparticles |
BNNSs | BN nanosheets |
BNNTs | BN nanotubes |
CH | Chitosan |
CNTs | Carbon nanotubes |
CTA bromide | Cetyltrimethylammonium bromide |
CVD | Chemical vapor deposition |
DFT | Density functional theory |
DMR | Dry methane reforming |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DOX | Doxorubicin |
FA | Folic acid |
Gr | Graphene |
HER | Hydrogen evolution reaction |
HDF cells | Human dermal fibroblast cells |
HUVE cells | Human umbilical vein endothelial cells |
IPA | Isopropyl alcohol |
MB | Methylene Blue |
MDS | Molecular dynamic simulation |
MMCs | Metal matrix composites |
NHPI | N-hydroxyphthalimide |
NPs | Nanoparticles |
NRR | Nitrogen reduction reaction |
ORR | Oxygen reduction reaction |
PBS | Phosphate-buffered saline |
Pc | Phthalocyanine |
PET | Polyethylene terephthalate |
PLA | PLA |
PVA | PVA |
QD | QD |
QEs | QEs |
rGO | rGO |
RhB | RhB |
ROS | ROS |
SACs | SACs |
SMSI | SMSI |
SPEs | SPEs |
SPR | SPR |
SPS | SPS |
TA | TA |
TOF | TOF |
WSR | WSR |
References
- Shtansky, D.V.; Tsuda, O.; Ikuhara, Y.; Yoshida, T. Crystallography and Structural Evolution of Cubic Boron Nitride Films during Bias Sputter Deposition. Acta Mater. 2000, 48, 3745–3759. [Google Scholar] [CrossRef]
- Sponza, L.; Amara, H.; Attaccalite, C.; Latil, S.; Galvani, T.; Paleari, F.; Wirtz, L.; Ducastelle, F. Direct and Indirect Excitons in Boron Nitride Polymorphs: A Story of Atomic Configuration and Electronic Correlation. Phys. Rev. B 2018, 98, 125206. [Google Scholar] [CrossRef]
- Warner, J.H.; Rümmeli, M.H.; Bachmatiuk, A.; Büchner, B. Atomic Resolution Imaging and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation. ACS Nano 2010, 4, 1299–1304. [Google Scholar] [CrossRef]
- Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable Synthesis of Uniform Few-Layer Hexagonal Boron Nitride Dielectric Films. Nano Lett. 2013, 13, 276–281. [Google Scholar] [CrossRef]
- Park, H.J.; Cha, J.; Choi, M.; Kim, J.H.; Tay, R.Y.; Teo, E.H.T.; Park, N.; Hong, S.; Lee, Z. One-Dimensional Hexagonal Boron Nitride Conducting Channel. Sci. Adv. 2020, 6, eaay4958. [Google Scholar] [CrossRef] [PubMed]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal Boron Nitride is an Indirect Bandgap Semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Z.; Lu, G.; Zhang, Q.; Zhang, B.; Ni, B.; Wang, C.; Li, X.; Xie, X.; Gao, H.; et al. Intrinsic Toughening and Stable Crack Propagation in Hexagonal Boron Nitride. Nature 2021, 594, 57–61. [Google Scholar] [CrossRef]
- Wagemann, E.; Wang, Y.; Das, S.; Mitra, S.K. On the Wetting Translucency of Hexagonal Boron Nitride. Phys. Chem. Chem. Phys. 2020, 22, 7710–7718. [Google Scholar] [CrossRef]
- Duerloo, K.-A.N.; Ong, M.T.; Reed, E.J. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876. [Google Scholar] [CrossRef]
- Ares, P.; Cea, T.; Holwill, M.; Wang, Y.B.; Roldán, R.; Guinea, F.; Andreeva, D.V.; Fumagalli, L.; Novoselov, K.S.; Woods, C.R. Piezoelectricity in Monolayer Hexagonal Boron Nitride. Adv. Mater. 2019, 32, 1905504. [Google Scholar] [CrossRef]
- Kundalwal, S.I.; Choyal, V. Enhancing the Piezoelectric Properties of Boron Nitride Nanotubes through Defect Engineering. Phys. E 2021, 125, 114304. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, H.; Wang, H.; Zhu, X.; Chen, L.; Gao, W.; Liu, G.; Yin, H. Defect Engineering of Hexagonal Boron Nitride Nanosheets via Hydrogen Plasma Irradiation. Appl. Surf. Sci. 2022, 593, 153386. [Google Scholar] [CrossRef]
- Cretu, O.; Ishizuka, A.; Yanagisawa, K.; Ishizuka, K.; Kimoto, K. Atomic-Scale Electrical Field Mapping of Hexagonal Boron Nitride Defects. ACS Nano 2021, 15, 5316–5321. [Google Scholar] [CrossRef] [PubMed]
- Balmain, W.H. Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen. J. Prakt. Chem. 1842, 27, 422–430. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Yu, I.; Jo, Y.; Ko, J.; Moon, S.Y.; Ahn, S.Y.M.; Joo, Y. Highly Aligned Array of Heterostructured Polyflourene-Isolated Boron Nitride and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2021, 13, 12417–12424. [Google Scholar] [CrossRef]
- Kovalskii, A.M.; Matveev, A.T.; Lebedev, O.I.; Sukhorukova, I.V.; Firestein, K.L.; Steinman, A.E.; Shtansky, D.V.; Golberg, D. Growth of Spherical Boron Oxynitride Banoparticles with Smooth and Petalled Surfaces during Chemical Vapor Deposition Process. CrystEngComm 2016, 18, 6689–6699. [Google Scholar] [CrossRef]
- Le, T.-H.; Oh, Y.; Kim, H.; Yoon, H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chem. Eur. J. 2022, 26, 6360–6401. [Google Scholar] [CrossRef]
- Gautam, C.; Chelliah, S. Methods of Hexagonal Boron Nitride Exfoliation and Its Functionalization: Covalent and Non-Covalent Approaches. RSC Adv. 2021, 11, 31284–31327. [Google Scholar] [CrossRef]
- Juma, I.G.; Kim, G.; Jariwala, D.; Behura, S.K. Direct Growth of Hexagonal Boron Nitride on Non-Metallic Substrates and Its Heterostructures with Graphene. iScience 2021, 24, 103374–103393. [Google Scholar] [CrossRef]
- Shen, X.; Zheng, Q.; Kim, J.-K. Rational Design of Two-Dimensional Nanofillers for Polymer Nanocomposites toward Multifunctional Applications. Prog. Mater. Sci. 2021, 115, 100708–100773. [Google Scholar] [CrossRef]
- Meziani, M.J.; Sheriff, K.; Parajuli, P.; Priego, P.; Bhattacharya, S.; Rao, A.M.; Quimby, J.L.; Qiao, R.; Wang, P.; Hwu, S.-J.; et al. Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem 2022, 23, e202100645–e202100668. [Google Scholar] [CrossRef] [PubMed]
- Revabhai, P.M.; Singhal, R.K.; Basu, H.; Kailasa, S.K. Progress on Boron Nitride Nanostructure Materials: Properties, Synthesis and Applications in Hydrogen Storage and Analytical Chemistry. J. Nanostruct. Chem. 2022. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Saleem, M.F.; Chen, Z.; Sun, W. Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications. Materials 2022, 15, 4396. [Google Scholar] [CrossRef] [PubMed]
- Yasnó, J.; Kiminami, R.H.G.A. Short Time Reaction Synthesis of Nano-Hexagonal Boron Nitride. Adv. Powder Technol. 2020, 31, 4436–4443. [Google Scholar] [CrossRef]
- Matveev, A.T.; Permyakova, E.S.; Kovalskii, A.M.; Leibo, D.; Shchetinin, I.V.; Maslakov, K.I.; Golberg, D.V.; Shtansky, D.V.; Konopatsky, A.S. New Insights into Synthesis of Nanocrystalline Hexagonal BN. Ceram. Int. 2020, 46, 19866–19872. [Google Scholar] [CrossRef]
- Köken, D.; Sungur, P.; Cebeci, H.; Cebeci, F.C. Revealing the Effect of Sulfur Compounds for Low-Temperature Synthesis of Boron Nitride Nanotubes from Boron Minerals. ACS Appl. Nano Mater. 2022, 5, 2137–2146. [Google Scholar] [CrossRef]
- Silva-Santos, S.D.; Impellizzeri, A.; Aguiar, A.L.; Journet, C.; Dalverny, C.; Toury, B.; De Sousa, J.M.; Ewels, C.P.; San-Miguel, A. High Pressure in Boron Nitride Nanotubes for Kirigami Nanoribbon Elaboration. J. Phys. Chem. C 2021, 125, 11440–11453. [Google Scholar] [CrossRef]
- Pham, T.; Stonemeyer, S.; Marquez, J.; Long, H.; Gillbert, M.; Worsley, M.; Zettl, A. One-Step Conversion of Graphite to Crinkled Boron Nitride Nanofoams for Hydrophobic Liquid Absorption. ACS Appl. Nano Mater. 2021, 4, 3500–3507. [Google Scholar] [CrossRef]
- Matsoso, B.; Vuillet-a-Ciles, V.; Bois, L.; Toury, B.; Journet, C. Improving Formation Conditions and Properties of hBN Nanosheets through BaF2-Assisted Polymer Derived Ceramics (PDCs) Technique. Nanomaterials 2020, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Han, R.; Naficy, S.; Casillas, G.; Sun, X.; Huang, Z. Few-Layered Boron Nitride Nanosheets for Strengthening Polyurethane Hydrogels. ACS Appl. Nano Mater. 2021, 4, 7988–7994. [Google Scholar] [CrossRef]
- Kondo, D.; Kataoka, M.; Hayashi, K.; Sato, S. Few-Layer Hexagonal Boron Nitride Synthesized by Chemical Vapor Deposition and Its Insulating Properties. Nano Express 2021, 2, 030001–030007. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, X.; Li, Q.; Yang, P.; Lu, G.; Jiang, R.; Wang, H.; Zhang, C.; Cong, C.; Liu, Z.; et al. Vapor–Liquid–Solid Growth of Large-Area Multilayer Hexagonal Boron Nitride on Dielectric Substrates. Nat. Comm. 2020, 11, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Garnier, V.; Steyer, P.; Journet, C.; Toury, B. Millimeter-Scale Hexagonal Boron Nitride Single Crystals for Nanosheet Generation. ACS Appl. Nano Mater. 2020, 3, 1508–1515. [Google Scholar]
- Li, J.; Wang, J.; Zhang, X.; Elias, C.; Ye, G.; Evans, D.; Eda, G.; Redwing, J.M.; Cassabois, G.; Gil, B.; et al. Hexagonal Boron Nitride Crystal Growth from Iron, a Single Component Flux. ACS Nano 2021, 15, 7032–7039. [Google Scholar] [CrossRef]
- Bansal, A.; Hilse, M.; Huet, B.; Wang, K.; Kozhakhmetov, A.; Kim, J.H.; Bachu, S.; Alem, N.; Collazo, R.; Robinson, J.A.; et al. Substrate Modification During Chemical Vapor Deposition of hBN on Sapphire. ACS Appl. Mater. Interfaces 2021, 13, 54516–54526. [Google Scholar] [CrossRef]
- Chen, J.; Wang, G.; Meng, J.; Cheng, Y.; Yin, Z.; Tian, Y.; Huang, J.; Zhang, S.; Wu, J.; Zhang, X. Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Appl. Mater. Interfaces 2022, 14, 7004–7011. [Google Scholar] [CrossRef]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Synthesis of Hexagonal Boron Nitride Films on Silicon and Sapphire Substrates by Low-Pressure Chemical Vapor Deposition. Thin Solid Film. 2021, 733, 138812. [Google Scholar] [CrossRef]
- Gigliotti, J.; Li, X.; Sundaram, S.; Deniz, D.; Prudkovskiy, V.; Turmaud, J.-P.; Hu, Y.; Hu, Y.; Fossard, F.; Meérot, J.-S.; et al. Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition. ACS Nano 2020, 14, 12962–12971. [Google Scholar] [CrossRef]
- Arjmandi-Tash, H. In Situ Growth of Graphene on Hexagonal Boron Nitride for Electronic Transport Applications. J. Mater. Chem. C 2020, 8, 380–386. [Google Scholar] [CrossRef]
- Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q.; et al. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano 2021, 15, 6489–6498. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lu, X.; Lou, Y.; Liu, K.; Zou, B. The Synthesis and Characterization of h-BN Nanosheets with High Yield and Crystallinity. ACS Omega 2021, 6, 27814–27822. [Google Scholar]
- Wang, Z.-G.; Wei, X.; Bai, M.-H.; Lei, J.; Xu, L.; Huang, H.-D.; Du, J.; Dai, K.; Xu, J.-Z.; Li, Z.-M. Green Production of Covalently Functionalized Boron Nitride Nanosheets Via Saccharide-Assisted Mechanochemical Exfoliation. ACS Sustain. Chem. Eng. 2021, 9, 11155–11162. [Google Scholar] [CrossRef]
- Huang, J.; E, S.; Li, J.; Jia, F.; Ma, Q.; Hua, L.; Lu, Z. Ball-Milling Exfoliation of Hexagonal Boron Nitride in Viscous Hydroxyethyl Cellulose for Producing Nanosheet Films as Thermal Interface Materials. ACS Appl. Nano Mater. 2021, 4, 13167–13175. [Google Scholar] [CrossRef]
- Yusupov, K.U.; Corthay, S.; Bondarev, A.V.; Kovalskii, A.M.; Matveev, A.T.; Arkhipov, D.; Golberg, D.; Shtansky, D.V. Spark Plasma Sintered Al-based Composites Reinforced with BN Nanosheets Exfoliated under Ball Milling in Ethylene Glycol. Mater. Sci. Eng. A 2019, 745, 74–81. [Google Scholar] [CrossRef]
- Ding, J.-H.; Zhao, H.-R.; Yu, H.-B. High-Yield Synthesis of Extremely High Concentrated and Few-Layered Boron Nitride Nanosheet Dispersions. 2D Mater. 2018, 5, 045015–045033. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Zhang, R.; Lin, S. Synthesis of Ultrathin Functional Boron Nitride Nanosheets and Their Application in Anticorrosion. ACS Appl. Nano Mater. 2021, 4, 11088–11096. [Google Scholar] [CrossRef]
- Andriani, Y.; Song, J.; Lim, P.C.; Seng, D.H.L.; Lai, D.M.Y.; Teo, S.L.; Kong, J.; Wang, X.; Zhang, X.; Liu, S. Green and Efficient Production of Boron Nitride Nanosheets Via Oxygen Doping-Facilitated Liquid Exfoliation. Ceram. Int. 2019, 45, 4909–4917. [Google Scholar] [CrossRef]
- Štengl, V.; Henych, J.; Kormunda, M. Self-Assembled BN and BCN Quantum Dots Obtained from High Intensity Ultrasound Exfoliated Nanosheets. Sci. Adv. Mater. 2014, 6, 1106–1116. [Google Scholar] [CrossRef]
- Shaybanizadeh, S.; Chermahini, A.N. Fabricating Boron Nitride Nanosheets from Hexagonal BN in Water Solution by a Combined Sonication and Thermal-Assisted Hydrolysis Method. Ceram. Int. 2020, 47, 11122–11128. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, L.; Wei, C.; Wang, Z.; Jia, L.; Ran, Q.; Huang, X.; Ren, J. Aqueous-Phase Exfoliation and Functionalization of Boron Nitride Nanosheets Using Tannic Acid for Thermal Management Applications. Ind. Eng. Chem. Res. 2020, 59, 16273–16282. [Google Scholar] [CrossRef]
- McWilliams, A.D.S.; Martínez-Jiménez, C.; Ya’akobi, A.M.; Ginestra, C.J.; Talmon, Y.; Pasquali, M.; Martí, A.A. Understanding the Exfoliation and Dispersion of Hexagonal Boron Nitride Nanosheets by Surfactants: Implications for Antibacterial and Thermally Resistant Coatings. ACS Appl. Nano Mater. 2021, 4, 142–151. [Google Scholar] [CrossRef]
- Mittal, N.; Kedawat, G.; Kanika; Gupta, S.; Gupta, B.K. An Innovative Method for Large-Scale Synthesis of Hexagonal Boron Nitride Nanosheets by Liquid Phase Exfoliation. ChemistrySelect 2020, 5, 12564–12569. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Q.; Jiang, P.; Huang, X. Rapid, High-Efficient and Scalable Exfoliation of High-Quality Boron Nitride Nanosheets and Their Application in Lithium-Sulfur Batteries. Nano Res. 2021, 14, 2424–2431. [Google Scholar] [CrossRef]
- Nie, X.; Li, G.; Jiang, Z.; Li, W.; Ouyang, T.; Wang, J. Co-Solvent Exfoliation of Hexagonal Boron Nitride: Effect of Raw Bulk Boron Nitride Size and Co-Solvent Composition. Nanomaterials 2020, 10, 1035. [Google Scholar] [CrossRef]
- Yu, L.; Yap, P.L.; Tran, D.N.H.; Santos, A.M.C.; Losic, D. High-Yield Preparation of Edge-Functionalized and Water Dispersible Few-Layers of Hexagonal Boron Nitride (hBN) by Direct Wet Chemical Exfoliation. Nanotechnology 2021, 32, 405601–405610. [Google Scholar] [CrossRef]
- Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. A Universal Method for Large-Yield and High-Concentration Exfoliation of Two-Dimensional Hexagonal Boron Nitride Nanosheets. Mater. Today 2019, 27, 33–42. [Google Scholar] [CrossRef]
- Duong, N.M.H.; Glushkov, E.; Chernev, A.; Navikas, V.; Comtet, J.; Nguyen, M.A.P.; Toth, M.; Radenovic, A.; Tran, T.T.; Aharonovich, I. Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation. Nano Lett. 2019, 19, 5417–5422. [Google Scholar] [CrossRef]
- Souza, R.F.B.; Maia, V.A.; Zambiazzi, P.J.; Otubo, L.; Lazar, D.R.R.; Neto, A.O. Facile, Clean, and Rapid Exfoliation of Boron-Nitride Using a Nonthermal Plasma Process. Mater. Today Adv. 2021, 12, 100181–100186. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, W.; Xu, G.; Xu, X.; Wang, M.; Chen, H.; Huang, W.; Ge, X.; Lin, M. Ni-Nanoparticle-Bound Boron Nitride Nanosheets Prepared by a Radiation-Induced Reduction-Exfoliation Method and Their Catalytic Performance. J. Mater. Chem. A 2020, 8, 9109–9120. [Google Scholar] [CrossRef]
- Yang, F.; Sun, X.; Yao, Z. Thionyl Chloride Corrodes Hexagonal Boron Nitride to Generate Reactive Functional Groups. Langmuir 2021, 37, 6442–6450. [Google Scholar] [CrossRef] [PubMed]
- Mena, L.G.; Hohn, K.L. Modification of Hexagonal Boron Nitride by thermal Treatment. J. Mater. Sci. 2021, 56, 7298–7307. [Google Scholar] [CrossRef]
- Ren, J.; Stagi, L.; Innocenzi, P. Hydroxylated Boron Nitride Materials: From Structures to Functional Applications. J. Mater. Sci. 2021, 56, 4053–4079. [Google Scholar] [CrossRef]
- Mapleback, B.J.; Brack, N.; Thomson, L.; Spencer, M.J.S.; Osborne, D.A.; Doshi, S.; Thostenson, E.T.; Rider, A.N. Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. Langmuir 2020, 36, 3425–3438. [Google Scholar] [CrossRef]
- Kovalskii, A.M.; Matveev, A.T.; Popov, Z.I.; Volkov, I.N.; Sukhanova, E.V.; Lytkina, A.A.; Yaroslavtsev, A.B.; Konopatsky, A.S.; Leybo, D.V.; Bondarev, A.V.; et al. (Ni,Cu)/Hexagonal BN Nanohybrids—New Efficient Catalysts for Methanol Steam Reforming and Carbon Monoxide Oxidation. Chem. Eng. J. 2020, 395, 125109. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Firestein, K.L.; Leybo, D.V.; Sukhanova, E.V.; Popov, Z.I.; Fang, X.; Manakhov, A.M.; Kovalskii, A.M.; Matveev, A.T.; Shtansky, D.V.; et al. Structural Evolution of Ag/BN Hybrids via a Polyol-Assisted Fabrication Process and Their Catalytic Activity in CO oxidation. Catal. Sci. Technol. 2019, 9, 6460–6470. [Google Scholar] [CrossRef]
- Grant, J.T.; Carrero, C.A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S.P.; Specht, S.E.; McDermott, W.P.; Chieregato, A.; Hermans, I. Selective Oxidative Dehydrogenation of Propane to Propene Using Boron Nitride Catalysts. Science 2016, 354, 1570–1573. [Google Scholar] [CrossRef]
- Venegas, J.M.; Hermans, I. The Influence of Reactor Parameters on the Boron Nitride-Catalyzed Oxidative Dehydrogenation of Propane. Org. Process Res. Dev. 2018, 22, 1644–1652. [Google Scholar] [CrossRef]
- McDermott, W.P.; Venegas, J.; Hermans, I. Selective Oxidative Cracking of N-butane to Light Olefins over Hexagonal Boron Nitride with Limited Formation of COx. ChemSusChem 2020, 13, 152–158. [Google Scholar]
- Kraus, P.; Lindstedt, R.P. It’s a Gas: Oxidative Dehydrogenation of Propane over Boron Nitride Catalysts. J. Phys. Chem. C 2021, 125, 5623–5634. [Google Scholar] [CrossRef]
- Du, M.; Liu, Q.; Huang, C.; Qiu, X. One-Step Synthesis of Magnetically Recyclable Co@BN Core–Shell Nanocatalysts for Catalytic Reduction of Nitroarenes. RSC Adv. 2017, 7, 35451–35459. [Google Scholar] [CrossRef]
- Chen, N.; Zhu, Z.; Su, T.; Liao, W.; Deng, C.; Ren, W.; Zhao, Y.; Lü, H. Catalytic Hydrogenolysis of Hydroxymethylfurfural to Highly Selective 2,5-Dimethylfuran over FeCoNi/h-BN Catalyst. Chem. Eng. J. 2020, 381, 122755. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Yang, X.; Tao, Z.; Ren, X.; Lv, B. The Role of Surface NH Groups on the Selective Hydrogenation of Cinnamaldehyde over Co/BN Catalysts. Appl. Surf. Sci. 2019, 492, 736–745. [Google Scholar] [CrossRef]
- Ji, H.; Ju, H.; Lan, R.; Wu, P.; Sun, J.; Chao, Y.; Xun, S.; Zhu, W.; Li, H. Phosphomolybdic Acid Immobilized on Ionic Liquid-Modified Hexagonal Boron Nitride for Oxidative Desulfurization of Fuel. RSC Adv. 2017, 7, 54266–54276. [Google Scholar] [CrossRef]
- Cheng, S.-Q.; Weng, X.-F.; Wang, Q.-N.; Zhou, B.-C.; Li, W.-C.; Li, M.-R.; He, L.; Wang, D.-Q.; Lu, A.-H. Defect-Rich BN-Supported Cu with Superior Dispersion for Ethanol Conversion to Aldehyde and Hydrogen. Chin. J. Catal. 2022, 43, 1092–1100. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Leybo, D.V.; Firestein, K.L.; Chepkasov, I.V.; Popov, Z.I.; Permyakova, E.S.; Volkov, I.N.; Kovalskii, A.M.; Matveev, A.T.; Shtansky, D.V.; et al. Polyol Synthesis of Ag/BN Nanohybrids and Their Catalytic Stability in CO Oxidation Reaction. ChemCatChem 2020, 12, 1691–1698. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhang, C.-W.; Wen, J.; Weng, X.; Shi, L. A Boron Nitride Nanosheet-Supported Pt/Cu Cluster as a High-Efficiency Catalyst for Propane Dehydrogenation. Catal. Sci. Technol. 2020, 10, 1248–1255. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; He, H.; Zhang, N.; Liu, Z.; Zhang, G. A Novel Two-Dimensional MgO-h-BN Nanomaterial Supported Pd Catalyst for CO Oxidation Reaction. Catal. Today 2019, 332, 214–221. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Deng, J.; Kuboon, S.; Faungnawakij, K.; Xiao, S.; Zhang, D. Coking-Resistant Dry Reforming of Methane over BN–Nanoceria Interface-Confined Ni Catalysts. Catal. Sci. Technol. 2020, 10, 4237–4244. [Google Scholar] [CrossRef]
- Kovalskii, A.M.; Volkov, I.N.; Evdokimenko, N.D.; Leybo, D.V.; Chepkasov, I.V.; Popov, Z.I.; Matveev, A.T.; Manahov, A.M.; Permyakova, E.S.; Konopatsky, A.S.; et al. (Au and Pt)/Hexagonal BN Nanohybrids in Carbon Monoxide Oxidation and Carbon Dioxide Hydrogenation Reactions. Appl. Catal. B-Environ. 2022, 303, 120891. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Firestein, K.L.; Evdokimenko, N.D.; Baidyshev, V.S.; Chepkasov, I.V.; Popov, Z.I.; Matveev, A.T.; Shetinin, I.V.; Leybo, D.V.; Volkov, I.N.; et al. Microstructure and Catalytic Properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN Nanohybrids in CO2 Hydrogenation Reaction: Experimental and Theoretical Insights. J. Catal. 2021, 402, 130–142. [Google Scholar] [CrossRef]
- Sheng, J.; Li, W.-C.; Lu, W.-D.; Yan, B.; Qiu, B.; Gao, X.-Q.; Zhang, R.-P.; Zhou, S.-Z.; Lu, A.-H. Preparation of Oxygen Reactivity-Tuned FeOx/BN Catalyst for Selectively Oxidative Dehydrogenation of Ethylbenzene to Styrene. Appl. Catal. B-Environ. 2022, 305, 121070. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zheng, P.; Sun, C.; Luo, J.; Xie, X. Boosting Selectivity and Stability on Pt/BN Catalysts for Propane Dehydrogenation via Calcination & Reduction-Mediated Strong Metal-Support Interaction. J. Energy Chem. 2022, 67, 451–457. [Google Scholar]
- Wang, X.; Zhang, C.; Chang, Q.; Wang, L.; Lv, B.; Xu, J.; Xiang, H.; Yang, Y.; Li, Y. Enhanced Fischer-Tropsch Synthesis Performances of Fe/h-BN Catalysts by Cu and Mn. Catal. Today 2020, 343, 91–100. [Google Scholar] [CrossRef]
- Peinado, C.; Liuzzi, D.; Ladera-Gallardo, R.M.; Retuerto, M.; Ojeda, M.; Peña, M.A.; Rojas, S. Effects of Support and Reaction Pressure for the Synthesis of Dimethyl Ether over Heteropolyacid Catalysts. Sci. Rep. 2020, 10, 8551. [Google Scholar] [CrossRef]
- Li, X.; Lin, B.; Li, H.; Yu, Q.; Ge, Y.; Jin, X.; Liu, X.; Zhou, Y.; Xiao, J. Carbon Doped Hexagonal BN as a Highly Efficient Metal-Free Base Catalyst for Knoevenagel Condensation Reaction. Appl. Catal. B-Environ. 2018, 239, 254–259. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Shi, X.; Jia, Y.; Zhu, G.; Peng, J.; Wang, Q. Optical and Photocatalytic Characteristics of Se-Doped h-Boron Nitride: Experimental Assessments and DFT Calculations. J. Alloys Compd. 2022, 909, 164791. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Xia, W.; Cao, Z.; Sheng, G.; Xie, X. Pd/BN Catalysts for Highly Efficient Hydrogenation of Maleic Anhydride to Succinic Anhydride. Appl. Catal. A-Gen. 2022, 630, 118471. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Wang, L.; Weng, H.; Wu, Z.; Jiao, L.; Muroya, Y.; Yamashita, S.; Cheng, S.; Li, F.; et al. γ-Radiation Synthesis of Ultrasmall Noble Metal (Pd, Au, Pt) Nanoparticles Embedded on Boron Nitride Nanosheets for High-Performance Catalysis. Ceram. Int. 2021, 47, 26963–26970. [Google Scholar] [CrossRef]
- Cao, Z.; Bu, J.; Zhong, Z.; Sun, C.; Zhang, Q.; Wang, J.; Chen, S.; Xie, X. Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over BN-Supported Pt Catalysts at Room Temperature. Appl. Catal. A-Gen. 2019, 578, 105–115. [Google Scholar] [CrossRef]
- Gao, M.; Jia, X.; Ma, J.; Fan, X.; Gao, J.; Xu, J. Self-Regulated Catalysis for the Selective Synthesis of Primary Amines from Carbonyl Compounds. Green Chem. 2021, 23, 7115–7121. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, Z.; Foo, G.S.; Gao, X.; Zhou, M.; Liu, B.; Veith, G.M.; Wu, P.; Browning, K.L.; Lee, H.N.; et al. Taming Interfacial Electronic Properties of Platinum Nanoparticles on Vacancy-Abundant Boron Nitride Nanosheets for Enhanced Catalysis. Nat. Comm. 2017, 8, 15291. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-J.; Wu, P.-W.; He, J.; Hua, M.-Q.; Chao, Y.-H.; Yang, N.; Chen, L.-L.; Jiang, W.; Fan, L.; Ji, H.-B.; et al. N-Hydroxyphthalimide Anchored on Hexagonal Boron Nitride as a Metal-Free Heterogeneous Catalyst for Deep Oxidative Desulfurization. Pet. Sci. 2021, 19, 1382–1389. [Google Scholar] [CrossRef]
- Rana, P.; Dixit, R.; Sharma, S.; Dutta, S.; Yadav, S.; Sharma, A.; Kaushik, B.; Rana, P.; Adholeya, A.; Sharma, R.K. Enhanced Catalysis through Structurally Modified Hybrid 2-D Boron Nitride Nanosheets Comprising of Complexed 2-Hydroxy-4-Methoxybenzophenone Motif. Sci. Rep. 2021, 11, 24429. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Zhang, T. Heterogeneous Single-Atom Catalysts. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Kaiser, S.K.; Chen, Z.; Akl, D.F.; Mitchell, S.; Pérez-Ramírez, J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120, 11703–11809. [Google Scholar] [CrossRef]
- Lei, Y.; Pakhira, S.; Fujisawa, K.; Liu, H.; Guerrero-Bermea, C.; Zhang, T.; Dasgupta, A.; Martinez, L.M.; Singamaneni, S.R.; Wang, K.; et al. Low Temperature Activation of Inert Hexagonal Boron Nitride for Metal Deposition and Single Atom Catalysis. Mater. Today 2021, 51, 108–116. [Google Scholar] [CrossRef]
- Li, Z.; Wei, W.; Li, H.; Li, S.; Leng, L.; Zhang, M.; Horton, J.H.; Wang, D.; Sun, W.; Guo, C.; et al. Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS Nano 2021, 15, 10175–10184. [Google Scholar] [CrossRef]
- Huang, X.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R.J.; Pattisson, S.; Daniel, I.T.; Miedziak, P.J.; Shaw, G.; et al. Au–Pd Separation Enhances Bimetallic Catalysis of Alcohol Oxidation. Nature 2022, 603, 271–275. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, W.; Chen, J.; Gan, Z.; Wang, X.; Zhou, J. Development of Core–Shell Structured Mo2C@BN as Novel Microwave Catalysts for Highly Effective Direct Decomposition of H2S into H2 and S at Low Temperature. Catal. Sci. Technol. 2020, 10, 6769–6779. [Google Scholar] [CrossRef]
- Erusappan, E.; Thiripuranthagan, S.; Durai, M.; Kumaravel, S.; Vembuli, T. Photocatalytic Performance of Visible Active Boron Nitride Supported ZnFe2O4 (ZnFe2O4/BN) Nanocomposites for the Removal of Aqueous Organic Pollutants. New J. Chem. 2020, 44, 7758–7770. [Google Scholar] [CrossRef]
- Ren, K.; Dong, Y.; Chen, Y.; Shi, H. Bi2WO6 Nanosheets Assembled BN Quantum Dots: Enhanced Charge Separation and Photocatalytic Antibiotics Degradation. Colloids Surf. A 2022, 637, 128208. [Google Scholar] [CrossRef]
- Yan, T.; Du, Z.; Wang, J.; Cai, H.; Bi, D.; Guo, Z.; Liu, Z.; Tang, C.; Fang, Y. Construction of 2D/2D Bi2WO6/BN Heterojunction for Effective Improvement on Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2022, 894, 162487. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Chu, X.; Dang, Y.; Liu, X.; Ma, T.; Li, J.; Wang, C. 3D Porous BN/RGO Skeleton Embedded by MoS2 Nanostructures for Simulated-Solar-Light Induced Hydrogen Production. Chem. Eng. J. 2022, 435, 132441. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, M.; Dong, G.; Wei, T.; Feng, J.; Ren, Y.; Luan, T. Photocatalytic Nitrate Reduction by a Non-Metal Catalyst h-BN: Performance and Mechanism. Chem. Eng. J. 2022, 429, 132216. [Google Scholar] [CrossRef]
- Haroon, H.; Wahid, M.; Majid, K. Metal−Organic Framework-Derived p-Type Cu3P/Hexagonal Boron Nitride Nanostructures for Photocatalytic Oxidative Coupling of Aryl Halides to Biphenyl Derivatives. ACS Appl. Nano Mater. 2022, 5, 2006–2017. [Google Scholar] [CrossRef]
- Bao, Y.; Yan, W.; Sun, P.-P.; Seow, J.Z.Y.; Lua, S.K.; Lee, W.J.; Liang, Y.N.; Lim, T.-T.; Xu, Z.J.; Zhou, K.; et al. Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS Appl. Mater. Interfaces 2022, 14, 18409–18419. [Google Scholar] [CrossRef]
- Matveev, A.T.; Konopatsky, A.S.; Leybo, D.V.; Volkov, I.N.; Kovalskii, A.M.; Varlamova, L.A.; Sorokin, P.B.; Fang, X.; Shtansky, D.V. Amorphous MoSxOy/h-BNxOy Nanohybrids: Synthesis and Dye Photodegradation. Nanomaterials 2021, 11, 3232. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, A.; He, W.; Xing, Y.; Xu, X. 2D New Nonmetal Photocatalyst of Sulfur-Doped h-BN Nanosheeets with High Photocatalytic Activity. Adv. Mater. Interfaces 2019, 6, 1900062. [Google Scholar] [CrossRef]
- Sun, M.; Lv, Y.; Song, Y.; Wu, H.; Wang, G.; Zhang, H.; Chen, M.; Fu, Q.; Bao, X. CO-Tolerant PtRu@h-BN/C Core–Shell Electrocatalysts for Proton Exchange Membrane Fuel Cells. Appl. Surf. Sci. 2018, 450, 244–250. [Google Scholar] [CrossRef]
- Yesudoss, D.K.; Lee, G.; Shanmugam, S. Strong Catalyst Support Interactions in Defect-Rich γ-Mo2N Nanoparticles Loaded 2D-h-BN Hybrid for Highly Selective Nitrogen Reduction Reaction. Appl. Catal. B-Environ. 2021, 287, 119952. [Google Scholar] [CrossRef]
- Min, Y.; Zhou, X.; Chen, J.-J.; Chen, W.; Zhou, F.; Wang, Z.; Yang, J.; Xiong, C.; Wang, Y.; Li, F.; et al. Integrating Single-Cobalt-Site and Electric Field of Boron Nitride in Dechlorination Electrocatalysts by Bioinspired Design. Nat. Comm. 2021, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Balta, Z.; Simsek, E.B. Understanding the Structural and Photocatalytic Effects of Incorporation of Hexagonal Boron Nitride Whiskers into Ferrite Type Perovskites (BiFeO3, MnFeO3) for Effective Removal of Pharmaceuticals from Real Wastewater. J. Alloys Compd. 2022, 898, 162897. [Google Scholar] [CrossRef]
- Merlo, A.; Mokkapati, V.R.S.S.; Pandit, S.; Mijakovic, I. Boron Nitride Nanomaterials: Biocompatibility and Bio-applications. Biomater. Sci. 2018, 6, 2298–2311. [Google Scholar] [CrossRef] [PubMed]
- Sen, O.; Melis, E.; Çulha, M. One-Step Synthesis of Hexagonal Boron Nitrides, Their Crystallinity and Biodegradation. Front. Bioeng. Biotechnol. 2018, 6, 83. [Google Scholar] [CrossRef]
- Şen, Ö.; Emanet, M.; Çulha, M. Stimulatory Effect of Hexagonal Boron Nitrides in Wound Healing. ACS Appl. Bio Mater. 2019, 2, 5582–5596. [Google Scholar] [CrossRef]
- Sogut, I.; Paltun, S.O.; Tuncdemir, M.; Ersoz, M.; Hurdag, C. The Antioxidant and Antiapoptotic Effect of Boric Acid on Hepatoxicity in Chronic Alcohol-Fed Rats. Can. J. Physiol. Pharmacol. 2018, 96, 404–411. [Google Scholar] [CrossRef]
- Donbaloglu, F.; Leblebici, S. Interactive Effect of Boric Acid and Temperature Stress on Phenological Characteristics and Antioxidant System in Helianthus annuus L. South Afr. J. Bot. 2022, 147, 391–399. [Google Scholar] [CrossRef]
- Ince, S.; Kucukkurt, I.; Cigerci, H.I.; Fidan, A.F.; Eryavuz, A. The Effects of Dietary Boric Acid and Borax Supplementation on Lipid Peroxidation, Antioxidant Activity, and DNA Damage in Rats. J. Trace Elem. Med. Biol. 2010, 24, 161–164. [Google Scholar] [CrossRef]
- Song, S.; Gao, P.; Sun, L.; Kang, D.; Kongsted, J.; Poongavanam, V.; Zhan, P.; Liu, X. Recent Developments in the Medicinal Chemistry of Single Boron Atom-Containing Compounds. Acta Pharm. Sin. B 2021, 11, 3035–3059. [Google Scholar] [CrossRef] [PubMed]
- Taskin, I.C.; Sen, O.; Emanet, M.; Culha, M. Hexagonal Boron Nitrides Reduce the Oxidative Stress on Cells. Nanotechnology 2020, 31, 215101. [Google Scholar] [CrossRef] [PubMed]
- Kar, F.; Söğüt, I.; Hacioğlu, C. Hexagonal Boron Nitride Nanoparticles Trigger Oxidative Stress by Modulating Thiol/Disulfide Homeostasis. Hum. Exp. Toxicol. 2021, 40, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Yegin, B.; Ozkazanc, H.; Er, K.D.; Ozkazanc, E. Antimicrobial Performance and Charge Transport Mechanism of Poly(N-Methylpyrrole)-Boron Nitride Composite. Mater. Chem. Phys. 2022, 278, 125709. [Google Scholar] [CrossRef]
- Pandit, S.; Gaska, K.; Mokkapati, V.R.S.S.; Forsberg, S.; Svensson, M.; Kádár, R.; Mijakovic, I. Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites. RSC Adv. 2019, 9, 33454–33459. [Google Scholar] [CrossRef]
- Mukheem, A.; Shahabuddin, S.; Akbar, N.; Miskon, A.; Sarih, N.M.; Sudesh, K.; Khan, N.A.; Saidur, R.; Sridewi, N. Boron Nitride Doped Polyhydroxyalkanoate/Chitosan Nanocomposite for Antibacterial and Biological Applications. Nanomaterials 2019, 9, 645. [Google Scholar] [CrossRef]
- Xiong, S.; Fu, P.; Zou, Q.; Chen, L.; Jiang, M.; Zhang, P.; Wang, Z.; Cui, L.; Guo, H.; Gai, J. Heat Conduction and Antibacterial Hexagonal Boron Nitride/Polypropylene Nanocomposite Fibrous Membranes for Face Masks with Long-Time Wearing Performance. ACS Appl. Mater. Interfaces 2020, 13, 196–206. [Google Scholar] [CrossRef]
- Onyszko, M.; Markowska-Szczupak, A.; Rakoczy, R.; Paszkiewicz, O.; Janusz, J.; Gordon-Kuza, A.; Wenelska, K.; Mijowska, E. Few Layered Oxidized h-BN as Nanofiller of Cellulose-Based Paper with Superior Antibacterial Response and Enhanced Mechanical/Thermal Performance. Int. J. Mol. Sci. 2020, 21, 5396. [Google Scholar] [CrossRef]
- Gudz, K.Y.; Antipina, L.Y.; Permyakova, E.S.; Kovalskii, A.M.; Konopatsky, A.S.; Filippovich, S.Y.; Dyatlov, I.A.; Slukin, P.V.; Ignatov, S.G.; Shtansky, D.V. Ag-Doped and Antibiotic-Loaded Hexagonal Boron Nitride Nanoparticles as Promising Carriers to Fight Different Pathogens. ACS Appl. Mater. Interfaces 2021, 13, 23452–23468. [Google Scholar] [CrossRef]
- Kivanç, M.; Barutca, B.; Koparal, A.T.; Göncü, Y.; Bostancı, S.H.; Ay, N. Effects of Hexagonal Boron Nitride Nanoparticles on Antimicrobial and Antibiofilm Activities, Cell Viability. Mater. Sci. Eng. C 2018, 91, 115–124. [Google Scholar] [CrossRef]
- Sert, B.; Gonca, S.; Ozay, Y.; Harputlu, E.; Ozdemir, S.; Ocakoglu, K. Biointerfaces Investigation of the Antifouling Properties of Polyethersulfone Ultrafiltration Membranes by Blending of Boron Nitride Quantum Dots. Colloid Surf. B 2021, 205, 111867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chan, C.; Li, Z.; Ma, J.; Meng, Q.; Zhi, C.; Sun, H.; Fan, J. Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. Langmuir 2019, 35, 6179–6187. [Google Scholar] [CrossRef] [PubMed]
- Gudz, K.Y.; Permyakova, E.S.; Matveev, A.T.; Bondarev, A.V.; Manakhov, A.M.; Sidorenko, D.A.; Filippovich, S.Y.; Brouchkov, A.V.; Golberg, D.V.; Ignatov, S.G.; et al. Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS Appl. Mater. Interfaces 2020, 12, 42485–42498. [Google Scholar] [CrossRef] [PubMed]
- Rasel, M.A.I.; Li, T.; Nguyen, T.D.; Singh, S.; Zhou, Y.; Gu, Y.T. Biophysical Response of Living Cells to Boron Nitride Nanoparticles: Uptake Mechanism and Bio-Mechanical Characterization. J. Nanoparticle Res. 2015, 17, 441. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, J.; Hanagata, N.; Wang, X.; Weng, Q.; Ito, A.; Bando, Y.; Golberg, D. Hollow Boron Nitride Nanospheres as Boron Reservoir for Prostate Cancer Treatment. Nat. Commun. 2017, 8, 13936. [Google Scholar] [CrossRef]
- Volkmann, M.; Meyns, M.; Lesyuk, R.; Lehmann, H.; Klinke, C. Attachment of Colloidal Nanoparticles to Boron Nitride Nanotubes. Chem. Mater. 2017, 29, 726–734. [Google Scholar] [CrossRef]
- Ikram, M.; Hussain, I.; Hassan, J.; Haider, A.; Imran, M.; Aqeel, M.; Ul-hamid, A.; Ali, S. Evaluation of Antibacterial and Catalytic Potential of Copper-Doped Chemically Exfoliated Boron Nitride Nanosheets. Ceram. Int. 2020, 46, 21073–21083. [Google Scholar] [CrossRef]
- Ikram, M.; Jahan, I.; Haider, A.; Hassan, J.; Ul-Hamid, A.; Imran, M.; Haider, J.; Shahzadi, A.; Shahbaz, A.; Ali, S. Bactericidal Behavior of Chemically Exfoliated Boron Nitride Nanosheets Doped with Zirconium. Appl. Nanosci. 2020, 10, 2339–2349. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, H.; Li, G.; Li, Y.; Jiang, J.; Chen, J.; Xie, Q.; Wu, D.; Ma, R.; Liu, X.; et al. Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS Nano 2022, 16, 7674–7688. [Google Scholar] [CrossRef]
- Xie, X.; Hou, Z.; Duan, G.; Zhang, S.; Zhou, H.; Yang, Z.; Zhou, R. Boron Nitride Nanosheets Elicit Significant Hemolytic Activity via Destruction of Red Blood Cell Membranes. Colloid Surf. B 2021, 203, 111765. [Google Scholar] [CrossRef]
- Czarniewska, E.; Mrówczyńska, L.; Jędrzejczak-Silicka, M.; Nowicki, P.; Trukawka, M.; Mijowska, E. Non-Cytotoxic Hydroxyl-Functionalized Exfoliated Boron Nitride Nanoflakes Impair the Immunological Function of Insect Haemocytes in Vivo. Sci. Rep. 2019, 9, 14027. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, S.; Gautam, M.; Poudel, K.; Yong, C.S.; Ku, S.K.; Kim, J.O.; Byeon, J.H. Biomaterials Streamlined Plug-in Aerosol Prototype for Reconfigurable Manufacture of Nano-Drug Delivery Systems. Biomaterials 2022, 284, 121511. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, D.D.; Marino, A.; Tapeinos, C.; Pucci, C. Homotypic Targeting and Drug Delivery in Glioblastoma Cells Through Cell Membrane-Coated Boron Nitride Nanotubes. Mater. Des. 2020, 192, 108742. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, T.; Tian, Y. Photodynamic Therapy Functionalized h-BN Nanosheets as a Theranostic Platform for SERS Real-Time Monitoring of MicroRNA and Photodynamic Therapy Angewandte. Angew. Chem. Int. Ed. 2019, 58, 7757–7761. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Khandaker, M.U.; Muhammad, N.; Rehman, F.; Ullah, Z.; Khan, G.; Khan, M.I.; Haq, S.; Ali, H.; Khan, A.; et al. Synthesis of Enriched Boron Nitride Nanocrystals: A Potential Element for Biomedical Applications. Appl. Radiat. Isot. 2020, 166, 109404. [Google Scholar] [CrossRef] [PubMed]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef]
- Yokoyama, K.; Miyatake, S.-I.; Kajimoto, Y.; Kawabata, S.; Doi, A.; Yoshida, T.; Asano, T.; Kirihata, M.; Ono, K.; Kuroiwa, T. Pharmacokinetic Study of BSH and BPA in Simultaneous Use for BNCT. J. Neurooncol. 2006, 78, 227–232. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Shi, Y.; Du, P.; Zhang, Z.; Liu, T.; Zhang, R.; Liu, Z. On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. ACS Nano 2019, 13, 13843–13852. [Google Scholar] [CrossRef]
- Li, L.; Dai, K.; Li, J.; Shi, Y.; Zhang, Z.; Liu, T.; Xie, J.; Zhang, R.; Liu, Z. A Boron-10 Nitride Nanosheet for Combinational Boron Neutron Capture Therapy and Chemotherapy of Tumor. Biomaterials 2021, 268, 120587. [Google Scholar] [CrossRef]
- Silva, W.M.; Ribeiro, H.; Taha-Tijerina, J.J. Potential Production of Theranostic Boron Nitride Nanotubes (64 Cu-BNNTs) Radiolabeled by Neutron Capture. Nanomaterials 2021, 11, 2907. [Google Scholar] [CrossRef]
- Shuai, C.; Gao, C.; Feng, P.; Xiao, T.; Yu, K.; Deng, Y.; Peng, S. Boron Nitride Nanotubes Reinforce Tricalcium Phosphate Scaffolds and Promote the Osteogenic Differentiation of Mesenchymal Stem Cells. J. Biomed. Nanotechnol. 2016, 12, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lin, J.; Fang, Y.; Yu, C.; Zhang, J.; Xue, Y.; Liu, Z.; Zhang, J.; Tang, C.; Huang, Y. Porous Boron Nitride Nanofibers/PVA Hydrogels with Improved Mechanical Property and Thermal Stability. Ceram. Int. 2018, 44, 22439–22444. [Google Scholar] [CrossRef]
- Belaid, H.; Nagarajan, S.; Barou, C.; Huon, V.; Bares, J.; Balme, S.; Miele, P.; Cornu, D.; Cavailles, V.; Teyssier, C.; et al. Boron Nitride Based Nanobiocomposites: Design by 3D Printing for Bone Tissue Engineering. ACS Appl. Bio Mater. 2020, 3, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Aki, D.; Ulag, S.; Unal, S.; Sengor, M.; Ekren, N.; Lin, C.-C.; Yilmazer, H.; Ustundag, C.B.; Kalaskar, D.M.; Gunduz, O. 3D Printing of PVA/Hexagonal Boron Nitride/Bacterial Cellulose Composite Scaffolds for Bone Tissue Engineering. Mater. Des. 2020, 196, 109094. [Google Scholar] [CrossRef]
- Özmeriç, A.; Tanoğlu, O.; Ocak, M.; Çelik, H.H.; Fırat, A.; Kaymaz, F.F.; Koca, G.; Şenes, M.; Alemdaroğlu, K.B.; Iltar, S.; et al. Intramedullary Implants Coated with Cubic Boron Nitride Enhance Bone Fracture Healing in a Rat Model. J. Trace Elem. Med. Biol. 2020, 62, 126599. [Google Scholar] [CrossRef]
- Baghdadi, I.; Zaazou, A.; Tarboush, A.B.; Zakhour, M.; Özcan, M.; Salameh, Z. Physiochemical Properties of a Bioceramic-Based Root Canal Sealer Reinforced with Multi-Walled Carbon Nanotubes, Titanium Carbide and Boron Nitride Biomaterials. J. Mech. Behav. Biomed. Mater. 2020, 110, 103892. [Google Scholar] [CrossRef]
- Goyal, A.; Aggarwal, D.; Kapoor, S.; Goel, N.; Singhal, S.; Shukla, J. A Comprehensive Experimental and Theoretical Study on BN Nanosheets for the Adsorption of Pharmaceutical Drugs. New J. Chem. 2020, 44, 3985–3997. [Google Scholar] [CrossRef]
- Datz, D.; Németh, G.; Walker, K.E.; Rance, G.A.; Pekker, A.; Khlobystov, A.N.; Kamarás, K. Polaritonic Enhancement of Near-Field Scattering of Small Molecules Encapsulated in Boron Nitride Nanotubes: Chemical Reactions in Confined Spaces. ACS Appl. Nano Mater. 2021, 4, 4335–4339. [Google Scholar] [CrossRef]
- Jerome, R.; Sundramoorthy, A.K. Hydrothermal Synthesis of Boron Nitride Quantum Dots/Poly(Luminol) Nanocomposite for Selective Detection of Ascorbic Acid. J. Electrochem. Soc. 2019, 166, B3017–B3024. [Google Scholar] [CrossRef]
- Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. Mechanochemical Green Synthesis of Exfoliated Edge-Functionalized Boron Nitride Quantum Dots: Application to Vitamin C Sensing through Hybridization with Gold Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 28819–28827. [Google Scholar] [CrossRef]
- Khan, A.F.; Brownson, D.A.C.; Foster, C.W.; Smith, G.C.; Banks, C.E. Surfactant Exfoliated 2D Hexagonal Boron Nitride (2D-hBN) Explored as a Potential Electrochemical Sensor for Dopamine: Surfactants Significantly Influence Sensor Capabilities. Analyst 2017, 142, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, C.; Chen, L.; Liu, D. A Novel Electrochemiluminescence Sensor Based on Resonance Energy Transfer System between Nitrogen Doped Graphene Quantum Dots and Boron Nitride Quantum Dots for Sensitive Detection of Folic Acid. Anal. Chim. Acta 2019, 1090, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Rani, R.; Sharma, A.L.; Singh, S. White Graphene Quantum Dots as Electrochemical Sensing Platform for Ferritin. Faraday Discuss. 2021, 227, 204–212. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Zhu, W.; Li, H. Hexagonal Boron Nitride Adsorbent: Synthesis, Performance Tailoring and Applications. J. Energy Chem. 2020, 40, 99–111. [Google Scholar] [CrossRef]
- Ihsanullah, I. Boron Nitride-Based Materials for Water Purification: Progress and Outlook. Chemosphere 2021, 263, 127970. [Google Scholar] [CrossRef]
- Bangari, R.S.; Sinha, N. Synthesis of High Surface Area Boron Nitride Nanosheets for the Removal of Methylene Blue and Rhodamine B Dyes from Contaminated Water. J. Nanosci. Nanotechnol. 2020, 20, 6222–6234. [Google Scholar] [CrossRef]
- Li, H.; Zhu, S.; Zhang, M.; Wu, P.; Pang, J.; Zhu, W.; Jiang, W.; Li, H. Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega 2017, 2, 5385–5394. [Google Scholar] [CrossRef]
- Hassan, J.; Ikram, M.; Ul-Hamid, A.; Imran, M.; Aqeel, M.; Ali, S. Application of Chemically Exfoliated Boron Nitride Nanosheets Doped with Co to Remove Organic Pollutants Rapidly from Textile Water. Nanoscale Res. Lett. 2020, 15, 75. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.H.; Hwang, J.H.; Kim, C.S.; Jang, S.G.; Park, C.; Lee, H.; Kim, M.J. Single- and Double-Walled Boron Nitride Nanotubes: Controlled Synthesis and Application for Water Purification. Sci. Rep. 2020, 10, 7416. [Google Scholar] [CrossRef]
- Goudarzi, S.; Kaur, J.; Eslami, R.; Kouhpour, A.; Kalinina, M.; Yousefi, N.; Zarrin, H. Laccase-Functionalized Hexagonal Boron Nitride-Coated Sponges for the Removal and Degradation of Anthracene. ACS Appl. Nano Mater. 2022, 5, 4493–4505. [Google Scholar] [CrossRef]
- Chao, Y.; Tang, B.; Luo, J.; Wu, P.; Tao, D.; Chang, H.; Chu, X.; Huang, Y.; Li, H.; Zhu, W. Hierarchical Porous Boron Nitride with Boron Vacancies for Improved Adsorption Performance to Antibiotics. J. Colloid Interface Sci. 2021, 584, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Song, Q.; Feng, X.; Wang, J.; Zhang, X.; Zhang, Y. Flame-Retardant Silanized Boron Nitride Nanosheet-Infused Superhydrophobic Sponges for Oil/Water Separation. ACS Appl. Nano Mater. 2021, 4, 11809–11819. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, M.; Huang, D.; Lei, S.; Zhang, X.; Wang, L.; Cheng, Z. Engineered Two-Dimensional Nanomaterials: An Emerging Paradigm for Water Purification and Monitoring. Mater. Horiz. 2021, 8, 758–802. [Google Scholar] [CrossRef]
- Zhang, G.; Zhan, Y.; He, S.; Zhang, L.; Zeng, G.; Chiao, Y.-H. Construction of Superhydrophilic/Underwater Superoleophobic Polydopamine-Modified h-BN/Poly(Arylene Ether Nitrile) Composite Membrane for Stable Oil-Water Emulsions Separation. Polym. Adv. Technol. 2020, 31, 1007–1018. [Google Scholar] [CrossRef]
- Doménech, N.G.; Purcell-Milton, F.; Arjona, A.S.; García, M.-L.C.; Ward, M.; Cabré, M.B.; Rafferty, A.; McKelvey, K.; Dunne, P.; Gun’ko, Y.K. High-Performance Boron Nitride-Based Membranes for Water Purification. Nanomaterials 2022, 12, 473. [Google Scholar] [CrossRef]
- Ahmadian-Alam, L.; Mahdavi, H.; Davijani, S.M.M. Influence of Structurally and Morphologically Different Nanofillers on the Performance of Polysulfone Membranes Modified by the Assembled PDDA/PAMPS-Based Hybrid Multilayer Thin Film. J. Environ. Manag. 2021, 300, 113809. [Google Scholar] [CrossRef]
- Tang, C.Y.; Zulhairun, A.K.; Wong, T.W.; Alireza, S.; Marzuki, M.S.A.; Ismail, A.F. Water Transport Properties of Boron Nitride Nanosheets Mixed Matrix Membranes for Humic Acid Removal. Heliyon 2019, 5, e01142. [Google Scholar] [CrossRef]
- Chen, C.; Qin, S.; Liu, D.; Wang, J.; Yang, G.; Su, Y.; Zhang, L.; Cao, W.; Ma, M.; Qian, Y.; et al. Ultrafast, Stable Ionic and Molecular Sieving through Functionalized Boron Nitride Membranes. ACS Appl. Mater. Interfaces 2019, 11, 30430–30436. [Google Scholar] [CrossRef]
- Rathod, N.H.; Yadav, V.; Rajput, A.; Sharma, J.; Shukla, D.K.; Kulshrestha, V. New Class of Composite Anion Exchange Membranes Based on Quaternized Poly(Phenylene Oxide) and Functionalized Boron Nitride. Colloid Interface Sci. Commun. 2020, 36, 100265. [Google Scholar] [CrossRef]
- Pendse, A.; Cetindag, S.; Lin, M.; Rackovic, A.; Debbarma, R.; Almassi, S.; Chaplin, B.P.; Berry, V.; Shan, J.W.; Kim, S. Charged Layered Boron Nitride-Nanoflake Membranes for Efficient Ion Separation and Water Purification. Small 2019, 15, 1904590. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, W.; Deshmukh, A.; Jia, S.; Guo, H.; Xin, R.; Elimelech, M.; Ajayan, P.M.; Lou, J.; Li, Q. Multifunctional Nanocoated Membranes for High-Rate Electrothermal Desalination of Hypersaline Waters. Nat. Nanotechnol. 2020, 15, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, D.; Chen, C.; Qian, Y.; Su, Y.; Qin, S.; Zhang, L.; Wang, X.; Sun, L.; Lei, W. Stable Ti3C2Tx MXene−Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS Nano 2021, 15, 6594–6603. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Lei, S.; Liu, Z. Flame-Retardant Activity of Modified Boron Nitride Nanosheets to Cotton. Text. Res. J. 2019, 90, 512–522. [Google Scholar] [CrossRef]
- Ambekar, R.; Deshmukh, A.; Villagrán, M.S.; Das, R.; Pal, V.; Miller, J.; Machado, L.D.; Kumbhakar, P.; Tiwary, C.S. 2D Hexagonal Boron Nitride Coated Cotton Fabric with Self-extinguishing Property. ACS Appl. Mater. Interfaces 2020, 12, 45274–45280. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Zhao, Y.; Zhou, J.; Wang, X.; Lin, T. Improving Thermal Conductivity of Cotton Fabrics Using Composite Coatings Containing Graphene, Multiwall Carbon Nanotube or Boron Nitride Fine Particles. Fibers Polym. 2013, 14, 1641–1649. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Ji, D.; Li, Z.; Yu, H. Scalable Preparation of 2D Boron Nitride Nanosheets and Enhancement of UV Absorption and Thermal Conductivity of Cellulose Nanofibers Membrane. J. Mater. Sci. 2020, 55, 13815–13823. [Google Scholar] [CrossRef]
- Corthay, S.; Kutzhanov, M.K.; Matveev, A.T.; Bondarev, A.V.; Leybo, D.V.; Shtansky, D.V. Nanopowder Derived Al/h-BN Composites with High Strength and Ductility. J. Alloys Compd. 2022, 912, 165199–165210. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Firestein, K.L.; Golberg, D. Fabrication and Application of BN Nanoparticles, Nanosheets, and Their Nanohybrids. Nanoscale 2018, 10, 17477–17493. [Google Scholar] [CrossRef]
- Corthay, S.; Kutzhanov, M.K.; Kovalskii, A.M.; Konopatskii, A.S.; Kvashnin, D.G.; Prikhodko, E.M.; Sorokin, P.B.; Shtansky, D.V.; Matveev, A.T. Obtaining Heterogeneous Al/BN Nanoparticles in Microwave Plasma. Tech. Phys. Lett. 2020, 46, 484–486. [Google Scholar] [CrossRef]
- Kvashnin, D.G.; Firestein, K.L.; Popov, Z.I.; Corthay, S.; Sorokin, P.B.; Golberg, D.V.; Shtansky, D.V. Al—BN Interaction in a High-Strength Lightweight Al/BN Metal-Matrix Composite: Theoretical Modelling and Experimental Verification. J. Alloys Compd. 2019, 782, 875–880. [Google Scholar] [CrossRef]
- Şenel, M.C.; Gürbüz, M. Synergistic Effect of Graphene/Boron Nitride Binary Nanoparticles on Aluminum Hybrid Composite Properties. Adv. Comp. Hybrid Mater. 2021, 4, 1248–1260. [Google Scholar] [CrossRef]
- Madhukar, P.; Selvaraj, N.; Rao, C.S.P.; Veeresh Kumar, G.B. Fabrication and Characterization Two Step Stir Casting with Ultrasonic Assisted Novel AA7150-hBN Nanocomposites. J. Alloys Compd. 2020, 815, 152464–152475. [Google Scholar] [CrossRef]
- Beyanagari, S.R.; Kandasamy, J. A Comparative Study on the Mechanical and Tribological Characteristics of AA7075/h-BN and AA7075/h-BN/MoS2 Hybrid Nano-Composites Produced Using Stir-Squeeze Casting Process. Surf. Topogr. Metrol. Prop. 2021, 9, 035019–035038. [Google Scholar] [CrossRef]
- Corthay, S.; Firestein, K.L.; Kvashnin, D.G.; Kutzhanov, M.K.; Matveev, A.T.; Kovalskii, A.M.; Leybo, D.V.; Golberg, D.V.; Shtansky, D.V. Elevated-Temperature High-Strength h-BN-Doped Al2014 and Al7075 Composites: Experimental and Theoretical Insights. Mater. Sci. Eng. A 2021, 809, 140969. [Google Scholar] [CrossRef]
- Corthay, S.; Kutzhanov, M.K.; Narzulloev, U.U.; Konopatsky, A.S.; Matveev, A.T.; Shtansky, D.V. Ni/h-BN Composites with High Strength and Ductility. Mater. Lett. 2022, 308, 131285. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Kvashnin, D.G.; Corthay, S.; Boyarintsev, I.; Firestein, K.L.; Orekhov, A.; Arkharova, N.; Golberg, D.V.; Shtansky, D.V. Microstructure Evolution during Al10SiMg Molten Alloy/BN Microflakes Interactions in Metal Matrix Composites Obtained through 3D Printing. J. Alloys Compd. 2021, 859, 157765. [Google Scholar] [CrossRef]
- Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J.C.; Jung, J.; MacDonald, A.H.; Vajtai, R.; Lou, J.; et al. Ultrathin High-Temperature Oxidation-Resistant Coatings of Hexagonal Boron Nitride. Nat. Commun. 2013, 4, 2541–2549. [Google Scholar] [CrossRef]
- Avila, J.D.; Bandyopadhyay, A. Influence of Boron Nitride on Reinforcement to Improve High Temperature Oxidation Resistance of Titanium. J. Mater. Res. 2019, 34, 1279–1289. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, G.-H.; Kim, B.-K.; Kim, K.T.; Yang, D.-Y.; Aranas, C.; Choi, J.-P.; Yu, J.-H. Thermo-Mechanical Improvement of Inconel 718 Using Ex Situ Boron Nitride-Reinforced Composites Processed by Laser Powder Bed Fusion. Sci. Rep. 2017, 7, 14359–14372. [Google Scholar] [CrossRef]
- Tang, X.; Wang, H.; Liu, C.; Zhu, X.; Gao, W.; Yin, H. Direct Growth of Hexagonal Boron Nitride Nanofilms on Stainless Steel for Corrosion Protection. ACS Appl. Nano Mater. 2021, 4, 12024–12033. [Google Scholar] [CrossRef]
- Akarsu, M.K.; Akin, I. Effects of Graphene Nanoplatelets and Hexagonal Boron Nitride on Spark Plasma Sintered (Zr,Nb)B2 Solid Solutions. J. Alloys Compd. 2021, 884, 161110. [Google Scholar] [CrossRef]
- Popov, O.; Shtansky, D.V.; Vishnyakov, V.; Klepko, O.; Polishchuk, S.; Kutzhanov, M.K.; Permyakova, E.S.; Teselko, P. Reaction Sintering of Machinable TiB2-BN-C Ceramics with In-Situ Formed h-BN Nanostructure. Nanomaterials 2022, 12, 1379. [Google Scholar] [CrossRef] [PubMed]
- Mostovoy, A.S.; Vikulova, M.A.; Lopukhova, M.I. Reinforcing Effects of Aminosilane-Functionalized h-BN on the Physicochemical and Mechanical Behaviors of Epoxy Nanocomposites. Sci. Rep. 2020, 10, 10676. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, H.; Mehra, N. Identification of Thermal Barrier Areas in Graphene Oxide/Boron Nitride Membranes by Scanning Thermal Microscopy: Thermal Conductivity Improvement through Membrane Assembling. ACS Appl. Nano Mater. 2021, 4, 4189–4198. [Google Scholar] [CrossRef]
- Shi, H.; Wang, H.; Lu, H.; Zhang, X.; Zhang, Z. Magnetic Field-Induced Orientation of Modified Boron Nitride Nanosheets in Epoxy Resin with Improved Flame and Wear Resistance. Langmuir 2021, 37, 8222–8231. [Google Scholar] [CrossRef]
- Luo, W.; Wu, C.; Li, L.; Jia, T.; Yu, S.; Yao, Y. Control of Alignment of h-BN in Polyetherimide Composite by Magnetic Field and Enhancement of Its Thermal Conductivity. J. Alloys Compd. 2022, 912, 165248. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Pan, D.; Zhang, W.; Shang, Y.; Su, F.; Ji, Y.; Liu, C.; Shen, C. Highly Thermal Conductive Poly(vinyl alcohol) Composites with Oriented Hybrid Networks: Silver Nanowire Bridged Boron Nitride Nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, L.; Wei, C.; Li, Q.; Huang, X.; Wang, Z.; Fu, M.; Ren, J. Synergistic Enhanced Thermal Conductivity of Epoxy Composites with Boron Nitride Nanosheets and Microspheres. J. Phys. Chem. C 2020, 124, 12723–12733. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Wang, J.; Li, H.; Xu, W.; Li, B.; Chen, L.; Wang, Q. Lightweight Porous Polystyrene with High Thermal Conductivity by Constructing 3D Interconnected Network of Boron Nitride Nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 46767–46778. [Google Scholar] [CrossRef]
- Wie, J.; Kim, M.; Kim, J. Enhanced Thermal Conductivity of a Polysilazane-Coated A-BN/Epoxy Composite Following Surface Treatment with Silane Coupling Agents. Appl. Surf. Sci. 2020, 529, 147091. [Google Scholar] [CrossRef]
- Du, M.; Li, X.; Wang, A.; Wu, Y.; Hao, X.; Zhao, M. One-Step Exfoliation and Fluorination of Boron Nitride Nanosheets and a Study of Their Magnetic Properties. Angew. Chem. Int. Ed. 2014, 53, 3645–3649. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Das, D.; Samanta, A.; de los Reyes, C.A.; Deng, L.; Alemany, L.B.; Weldeghiorghis, T.K.; Khabashesku, V.N.; Kochat, V.; Jin, Z.; et al. Fluorinated H-BN as a Magnetic Semiconductor. Sci. Adv. 2017, 3, e1700842. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wu, Y.; Zhu, B.; Li, J.; Fu, Y.; Gao, D.; Zhao, J.; Ma, S. Defect-Related High Temperature Ferromagnetism in Mechanically Milled Hexagonal Boron Nitride Nanoplates. Appl. Surf. Sci. 2019, 487, 825–832. [Google Scholar] [CrossRef]
- Weng, Q.; Kvashnin, D.G.; Wang, X.; Cretu, O.; Yang, Y.; Zhou, M.; Zhang, C.; Tang, D.-M.; Sorokin, P.B.; Bando, Y.; et al. Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization. Adv. Mater. 2017, 29, 1700695. [Google Scholar] [CrossRef]
- Cao, C.; Yang, J.; Yan, S.; Bai, W.; Ma, Y.; Xue, Y.; Tang, C. Photoelectric and Magnetic Properties of Boron Nitride Nanosheets with Turbostratic Structure and Oxygen Doping. 2D Mater. 2021, 9, 015014. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamada, Y.; Koide, A.; Entani, S.; Li, S.; Popov, Z.I.; Sorokin, P.B.; Naramoto, H.; Sasaki, M.; Amemiya, K.; et al. Interface-Induced Perpendicular Magnetic Anisotropy of Co Nanoparticles on Single-Layer h-BN/Pt(111). Appl. Phys. Lett. 2018, 112, 022407. [Google Scholar] [CrossRef]
- Fan, M.; Wu, J.; Yuan, J.; Deng, L.; Zhong, N.; He, L.; Cui, J.; Wang, Z.; Behera, S.K.; Zhang, C.; et al. Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Adv. Mater. 2019, 31, 1805778. [Google Scholar] [CrossRef]
- Dankert, A.; Karpiak, B.; Dash, S.P. Hall Sensors Batch-Fabricated on All-CVD h-BN/Graphene/h-BN Heterostructures. Sci. Rep. 2017, 7, 15231. [Google Scholar] [CrossRef]
- Nabid, M.R.; Bide, Y.; Jafari, M. Boron Nitride Nanosheets Decorated with Fe3O4 Nanoparticles as a Magnetic Bifunctional Catalyst for Post-Consumer PET Wastes Recycling. Polym. Degrad. Stab. 2019, 169, 108962. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Liu, Q.; Huang, C.; Qiu, X. Magnetically Recyclable Ni@h-BN Composites for Efficient Hydrolysis of Ammonia Borane. Int. J. Hydrogen Energy 2017, 42, 16003–16011. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Kalinina, V.V.; Savchenko, A.S.; Leybo, D.V.; Sukhanova, E.V.; Baidyshev, V.S.; Popov, Z.I.; Bondarev, A.V.; Polčak, J.; Shtansky, D.V. Microstructure, Magnetic and Absorbent Properties of FePt/h-BN Nanomaterials. Nano Res. 2022. [Google Scholar] [CrossRef]
- Ramirez Leyva, J.H.; Hethnawi, A.; Vitale, G.; Nassar, N.N. Magnetic Nanostructured White Graphene for Oil Spill and Water Cleaning. Ind. Eng. Chem. Res. 2018, 57, 13065–13076. [Google Scholar] [CrossRef]
- Wan, X.; Wan, T.; Cao, C.; Tang, C.; Xue, Y.; Yan, Y.; Li, Z.; Ye, Z.; Peng, X. Accelerating CO2 Transport through Nanoconfined Magnetic Ionic Liquid in Laminated BN Membrane. Chem. Eng. J. 2021, 423, 130309. [Google Scholar] [CrossRef]
- Zhan, Y.; Long, Z.; Wan, X.; Zhan, C.; Zhang, J.; He, Y. Enhanced Dielectric Permittivity and Thermal Conductivity of Hexagonal Boron Nitride/Poly(Arylene Ether Nitrile) Composites through Magnetic Alignment and Mussel Inspired Co-Modification. Ceram. Int. 2017, 43, 12109–12119. [Google Scholar] [CrossRef]
- Yuan, F.; Jiao, W.; Yang, F.; Liu, W.; Xu, Z.; Wang, R. Surface Modification and Magnetic Alignment of Hexagonal Boron Nitride Nanosheets for Highly Thermally Conductive Composites. RSC Adv. 2017, 7, 43380–43389. [Google Scholar] [CrossRef]
- Ni, J.L.; Duan, F.; Feng, S.J.; Hu, F.; Kan, X.C.; Liua, X.S. High Performance of FeSiAl/hBN Soft Magnetic Composites. J. Alloys Compd. 2022, 897, 163191. [Google Scholar] [CrossRef]
- Qian, K.; Zhou, Q.; Thaiboonrod, S.; Fang, J.; Miao, M.; Wu, H.; Cao, S.; Feng, X. Highly Thermally Conductive Ti3C2Tx/h-BN Hybrid Films via Coulombic Assembly for Electromagnetic Interference Shielding. J. Colloid Interface Sci. 2022, 613, 488–498. [Google Scholar] [CrossRef]
- Lin, L.X.; Xu, Y.X.; Zhang, S.W.; Ross, I.M.A.; Ong, C.; Allwood, D.A. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small 2014, 10, 60–65. [Google Scholar] [CrossRef]
- Ding, Y.; He, P.; Li, S.; Chang, B.; Zhang, S.; Wang, Z.; Chen, J.; Yu, J.; Wu, S.; Zeng, H.; et al. Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano 2021, 15, 14610–14617. [Google Scholar] [CrossRef]
- Ren, J.; Stagi, L.; Malfatti, L.; Carbonaro, C.M.; Granozzi, G.; Calvillo, L.; Garroni, S.; Enzo, S.; Innocenzi, P. Engineering UV-Emitting Defects in h-BN Nanodots by a Top-Down Route. Appl. Surf. Sci. 2021, 567, 150727. [Google Scholar] [CrossRef]
- Stewart, J.C.; Fan, Y.; Danial, J.S.H.; Goetz, A.; Prasad, A.S.; Burton, O.J.; Alexander-Webber, J.A.; Lee, S.F.; Skoff, S.M.; Babenko, V.; et al. Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS Nano 2021, 15, 13591–13603. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum Emission from Hexagonal Boron Nitride Monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Zachreson, C.; Berhane, A.M.; Bray, K.; Sandstrom, R.G.; Li, L.H.; Taniguchi, T.; Watanabe, K.; Aharonovich, I.; Toth, M. Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride. Phys. Rev. Appl. 2016, 5, 034005. [Google Scholar] [CrossRef]
- Gritsienko, A.V.; Matveev, A.T.; Voskanyan, G.R.; Kurochkin, N.S.; Shcherbakov, D.; Eliseev, S.P.; Shtansky, D.V.; Vitukhnovsky, A.G. Photocontrol of Single-Photon Generation in Boron Nitride Nanoparticles Synthesized by Ammonothermal Crystallization. ACS Appl. Nano Mater. 2022; accepted. [Google Scholar] [CrossRef]
- Kim, S.; Duong, N.M.H.; Nguyen, M.; Lu, T.-J.; Kianinia, M.; Mendelson, N.; Solntsev, A.; Bradac, C.; Englund, D.R.; Aharonovich, I. Integrated on Chip Platform with Quantum Emitters in Layered Materials. Adv. Opt. Mater. 2019, 7, 1901132. [Google Scholar] [CrossRef]
- Khatri, P.; Ramsay, A.J.; Malein, R.N.E.; Chong, H.M.H.; Luxmoore, I.J. Optical Gating of Photoluminescence from Color Centers in Hexagonal Boron Nitride. Nano Lett. 2020, 20, 4256–4263. [Google Scholar] [CrossRef]
- Preuß, J.A.; Rudi, E.; Kern, J.; Schmidt, R.; Bratschitsch, R.; Michaelis de Vasconcellos, S. Assembly of Large hBN Nanocrystal Arrays for Quantum Light Emission. 2D Mater. 2021, 8, 035005. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; White, S.; Nonahal, M.; Xu, Z.-Q.; Watanabe, K.; Taniguchi, T.; Toth, M.; Tran, T.T.; Aharonovich, I. Generation of High-Density Quantum Emitters in High-Quality, Exfoliated Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces 2021, 13, 47283–47292. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.; Li, C.; Bendavid, A.; Westerhausen, M.T.; Bradac, C.; Toth, M.; Aharonovich, I.; Tran, T.T. Bottom-up Synthesis of Hexagonal Boron Nitride Nanoparticles with Intensity-Stabilized Quantum Emitters. Small 2021, 17, 2008062. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D. Photonics with Hexagonal Boron Nitride. Nat. Rev. Mater. 2019, 4, 552–567. [Google Scholar] [CrossRef]
- Dastidar, M.G.; Thekkooden, I.; Nayak, P.K.; Bhallamudi, V.P. Quantum Emitters and Detectors Based on 2D van der Waals Materials. Nanoscale 2022, 14, 5289–5313. [Google Scholar] [CrossRef] [PubMed]
- Glushkov, E.; Macha, M.; Räth, E.; Navikas, V.; Ronceray, M.; Cheon, C.Y.; Ahmed, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; et al. Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water. ACS Nano 2022, 16, 3695–3703. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.; Yu, M.; Noh, G.; Lee, J.; Seo, H. Polarization and Localization of Single-Photon Emitters in Hexagonal Boron Nitride Wrinkles. ACS Appl. Mater. Interfaces 2020, 12, 36362–36369. [Google Scholar] [CrossRef] [PubMed]
- Hartl, T.; Herrmann, D.; Will, M.; Falke, Y.; Grüneis, A.; Michely, T.; Bampoulis, P. Silicon cluster arrays on the monolayer of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2022, 126, 6809–6814. [Google Scholar] [CrossRef]
- Chen, Y.; Tran, T.N.; Duong, N.M.H.; Li, C.; Toth, M.; Bradac, C.; Aharonovich, I.; Solntsev, A.; Tran, T.T. Optical Thermometry with Quantum Emitters in Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces 2020, 12, 25464–25470. [Google Scholar] [CrossRef]
- Schué, L.; Sponza, L.; Plaud, A.; Bensalah, H.; Watanabe, K.; Taniguchi, T.; Ducastelle, F.; Loiseau, A.; Barjon, J. Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN. Phys. Rev. Lett. 2019, 122, 067401. [Google Scholar] [CrossRef]
- Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B. Direct Observation of the Lowest Indirect Exciton State in the Bulk of Hexagonal Boron Nitride. Phys. Rev. B 2018, 97, 041201. [Google Scholar] [CrossRef]
- Cannuccia, E.; Monserrat, B.; Attaccalite, C. Theory of Phonon-Assisted Luminescence in Solids: Application to Hexagonal Boron Nitride. Phys. Rev. B 2019, 99, 081109. [Google Scholar] [CrossRef]
- Paleari, F.; Miranda, H.P.; Molina-Sánchez, A.; Wirtz, L. Exciton-Phonon Coupling in the Ultraviolet Absorption and Emission Spectra of Bulk Hexagonal Boron Nitride. Phys. Rev. Lett. 2019, 122, 187401. [Google Scholar] [CrossRef]
- Segura, A.; Cuscó, R.; Attaccalite, C.; Taniguchi, T.; Watanabe, K.; Artús, L. Tuning the Direct and Indirect Excitonic Transitions of h-BN by Hydrostatic Pressure. J. Phys. Chem. C 2021, 125, 12880–12885. [Google Scholar] [CrossRef]
- Li, N.; Guo, X.; Yang, X.; Qi, R.; Qiao, T.; Li, Y.; Shi, R.; Li, Y.; Liu, K.; Xu, Z.; et al. Direct Observation of Highly Confined Phonon Polaritons in Suspended Monolayer Hexagonal Boron Nitride. Nat. Mater. 2021, 20, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Jadczak, J.; Glazov, M.; Kutrowska-Girzycka, J.; Schindler, J.J.; Debus, J.; Ho, C.-H.; Watanabe, K.; Taniguchi, T.; Bayer, M.; Bryja, L. Upconversion of Light into Bright Intravalley Excitons Via Dark Intervalley Excitons in hBN-Encapsulated WSe2 Monolayers. ACS Nano 2021, 15, 19165–19174. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Wu, Y.; Gao, F.; Yang, H.; Hu, Y.; Shang, H.; Zhang, X.; Zhang, J.; Li, Z.; Fu, Y.Q.; et al. Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping. ACS Appl. Mater. Interfaces 2022, 14, 16453–16461. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Q.; Elbadawi, C.; Tran, T.T.; Kianinia, M.; Li, X.; Liu, D.; Hoffman, T.B.; Nguyen, M.; Kim, S.; Edgar, J.H.; et al. Single Photon Emission from Plasma Treated 2D Hexagonal Boron Nitride. Nanoscale 2018, 10, 7957–7965. [Google Scholar] [CrossRef] [PubMed]
- Abidi, I.H.; Mendelson, N.; Tran, T.T.; Tyagi, A.; Zhuang, M.; Weng, L.T.; Ozyilmaz, B.; Aharonovich, I.; Toth, M.; Luo, Z. Selective Defect Formation in Hexagonal Boron Nitride. Adv. Opt. Mater. 2019, 7, 1900397. [Google Scholar] [CrossRef]
- Krečmarová, M.; Canet-Albiach, R.; Pashaei-Adl, H.; Gorji, S.; Muñoz-Matutano, G.; Nesládek, M.; Martínez-Pastor, J.P.; Sánchez-Royo, J.F. Extrinsic Effects on the Optical Properties of Surface Color Defects Generated in Hexagonal Boron Nitride Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 46105–46116. [Google Scholar] [CrossRef]
- Sajid, A.; Thygesen, K.S.; Reimers, J.R.; Ford, M.J. Edge Effects on Optically Detected Magnetic Resonance of Vacancy Defects in Hexagonal Boron Nitride. Comm. Phys. 2020, 3, 153. [Google Scholar] [CrossRef]
- Kim, G.; Ma, K.Y.; Park, M.; Kim, M.; Jean, J.; Song, J.; Barrios-Vargas, E.J.; Sato, Y.; Lin, Y.-C.; Suenaga, K.; et al. Blue Emission at Atomically Sharp 1D Heterojunctions between Graphene and h-BN. Nat. Comm. 2020, 11, 5359. [Google Scholar] [CrossRef]
- Jung, J.Y.; Shim, Y.-S.; Son, C.S.; Kim, Y.-K.; Hwang, D. Boron Nitride Nanoparticle Phosphors for Use in Transparent Films for Deep-UV Detection and White Light-Emitting Diodes. ACS Appl. Nano Mater. 2021, 4, 3529–3536. [Google Scholar] [CrossRef]
- Gao, M.; Meng, J.; Chen, Y.; Ye, S.; Wang, Y.; Ding, C.; Li, Y.; Yin, Z.; Zeng, X.; You, J.; et al. Catalyst-Free Growth of Two-Dimensional Hexagonal Boron Nitride Few-Layers on Sapphire for Deep Ultraviolet Photodetectors. J. Mater. Chem. C 2019, 7, 14999–15006. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, J.; Tian, Y.; Chen, Y.; Wang, G.; Yin, Z.; Jin, P.; You, J.; Wu, J.; Zhang, X. Deep Ultraviolet Photodetectors Based on Carbon-Doped Two-Dimensional Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces 2020, 12, 27361–27367. [Google Scholar] [CrossRef]
- Liu, H.; Meng, J.; Zhang, X.; Chen, Y.; Yin, Z.; Wang, D.; Wang, Y.; You, J.; Gao, M.; Jin, P. High-Performance Deep Ultraviolet Photodetectors Based on Few-Layer Hexagonal Boron Nitride. Nanoscale 2018, 10, 5559–5565. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, L.; Gao, F.; Dai, M.; Hu, Y.; Chen, H.; Zhang, J.; Qiu, Y.; Jia, D.C.; Zhou, Y.; et al. Shape Evolution of Two Dimensional Hexagonal Boron Nitride Single Domains on Cu/Ni Alloy and Its Applications in Ultraviolet Detection. Nanotechnology 2019, 30, 245706. [Google Scholar] [CrossRef]
- Tizei, L.H.G.; Lourencёo-Martins, H.; Das, P.; Woo, S.Y.; Scarabelli, L.; Hanske, C.; Liz-Marzґan, L.M.; Watanabe, K.; Taniguchi, T.; Kociak, M. Monolayer and Thin h-BN as Substrates for Electron Spectro-Microscopy Analysis of Plasmonic Nanoparticles. Appl. Phys. Lett. 2018, 113, 231108. [Google Scholar] [CrossRef]
- Volkov, I.N.; Yermekova, Z.S.; Khabibrakhmanov, A.I.; Kovalskii, A.M.; Corthey, S.; Tameev, A.R.; Aleksandrov, A.E.; Sorokin, P.B.; Shtansky, D.V.; Matveev, A.T. Extended UV Detection Bandwidth: H-BN/Al Powder Nanocomposites Photodetectors Sensitive in a Middle UV Region Due to Localized Surface Plasmon Resonance Effect. EPL 2021, 133, 28002. [Google Scholar] [CrossRef]
- Kaushik, S.; Karmakar, S.; Varshney, R.K.; Sheoran, H.; Chugh, D.; Jagadish, C.; Tan, H.H.; Singh, R. Deep-Ultraviolet Photodetectors Based on Hexagonal Boron Nitride Nanosheets Enhanced by Localized Surface Plasmon Resonance in Al Nanoparticles. ACS Appl. Nano Mater. 2022, 5, 7481–7491. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q.; Jena, P. Electronic and Magnetic Properties of a BN Sheet Decorated with Hydrogen and Fluorine. Phys. Rev. B 2010, 81, 085442. [Google Scholar] [CrossRef]
- Lopez-Bezanilla, A.; Huang, J.; Terrones, H.; Sumpter, B.G. Boron Nitride Nanoribbons Become Metallic. Nano Lett. 2011, 11, 3267–3273. [Google Scholar] [CrossRef]
- Davies, A.; Albar, J.D.; Summerfield, A.; Thomas, J.C.; Cheng, T.S.; Korolkov, V.V.; Stapleton, E.; Wrigley, J.; Goodey, N.L.; Mellor, C.J.; et al. Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Lett. 2018, 18, 498–504. [Google Scholar] [CrossRef]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; Mayorov, A.S.; Peres, N.M.; et al. Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Lett. 2012, 12, 1707–1710. [Google Scholar] [CrossRef]
- Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K.L.; Kim, P.; Hone, J. Electron Tunneling through Atomically Flat and Ultrathin Hexagonal Boron Nitride. Appl. Phys. Lett. 2011, 99, 243114. [Google Scholar] [CrossRef]
- Das, B.; Maity, S.; Paul, S.; Dolui, K.; Paramanik, S.; Naskar, S.; Mohanty, S.R.; Chakraborty, S.; Ghosh, A.; Palit, M.; et al. Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction. ACS Nano 2012, 15, 20203–20213. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Igari, T.; Mitsuishi, K.; Nagao, M.; Sasaki, M.; Yamada, Y. Highly Monochromatic Electron Emission from Graphene/Hexagonal Boron Nitride/Si Heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 4061–4067. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.I.-J.; Yamoah, M.A.; Li, Q.; Karamlou, A.H.; Dinh, T.; Kannan, B.; Braumüller, J.; Kim, D.; Melville, A.J.; Muschinske, S.E.; et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 2022, 21, 398–403. [Google Scholar] [CrossRef]
- Chang, Y.-R.; Nishimura, T.; Taniguchi, T.; Watanabe, K.; Nagashio, K. Performance Enhancement of SnS/h-BN Heterostructure p-Type FET via the Thermodynamically Predicted Surface Oxide Conversion Method. ACS Appl. Mater. Interfaces 2022, 14, 19928–19937. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wang, A.; Zhou, J.; Ju, S.; Chen, J.; Watanabe, K.; Taniguchi, T.; Shi, Y.; Li, S. Clean BN-Encapsulated 2D FETs with Lithography-Compatible Contacts. ACS Appl. Mater. Interfaces 2022, 14, 18697–18703. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, H.; Le, S.T.; Abuzaid, H.; Li, G.; Cao, L.; Davydov, A.V.; Franklin, A.D.; Richter, C.A. Are 2D Interfaces Really Flat? ACS Nano 2022, 16, 5316–5324. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Liu, P.; Lu, W.; Cui, J.; Chen, X.; Lu, M. Energy-Efficient Synaptic Devices Based on Planar Structured h-BN Memristor. J. Alloys Compd. 2022, 909, 164775. [Google Scholar] [CrossRef]
- Meng, J.-L.; Wang, T.-Y.; He, Z.-Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q.-Q.; Ding, S.J.; Bao, W.-Z.; Zhou, P.; et al. Flexible Boron Nitride-Based Memristor for In Situ Digital and Analogue Neuromorphic Computing Applications. Mater. Horiz. 2021, 8, 538–546. [Google Scholar] [CrossRef]
- Wu, L.; Wang, A.; Shi, J.; Yan, J.; Zhou, Z.; Bian, C.; Ma, J.; Ma, R.; Liu, H.; Chen, J.; et al. Atomically Sharp Interface Enabled Ultrahigh-Speed Non-Volatile Memory Devices. Nat. Nanotechnol. 2021, 16, 882–887. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Jiang, L.; Li, J.; Ding, Y.; Wang, S.; Jiang, Y.-G.; Sun, Y.-B.; Wang, J.; Chen, S.; et al. Ultrafast Non-Volatile Flash Memory Based on van Der Waals Heterostructures. Nat. Nanotechnol. 2021, 16, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Ueno, K.; Taniguchi, T.; Watanabe, K.; Nishimura, T.; Nagashio, K. Ultrafast Operation of 2D Heterostructured Nonvolatile Memory Devices Provided by the Strong Short-Time Dielectric Breakdown Strength of h-BN. ACS Appl. Mater. Interfaces 2022, 14, 25659–25669. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, A.C.M.; Hyun, W.J.; Luu, N.S.; Lim, J.-M.; Park, K.-Y.; Hersam, M.C. Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 8107–8114. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Tan, S.; Peng, B.; Qiao, B.; Zhang, Z.; Huang, X.; Sui, H. Improving Energy Storage Density and Efficiency of Polymer Dielectrics by Adding Trace Biomimetic Lysozyme-Modified Boron Nitride. ACS Appl. Mater. Interfaces 2020, 3, 7952–7963. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Wang, J.; Lan, Y.; Wei, X.; Zhang, Z. Enhancing High Field Dielectric Properties of Polymer Films by Wrapping a Thin Layer of Self-Assembled Boron Nitride Film. Appl. Surf. Sci. 2021, 535, 147737. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Wang, Y.; Xiong, D.; Wang, S.; Yan, Y.; Chen, S.; Tian, B.; Shi, Y. Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer. ACS Appl. Mater. Interfaces 2021, 13, 56109–56115. [Google Scholar] [CrossRef]
- Yi, Y.; Li, H.; Chang, H.; Yang, P.U.; Tian, X.; Liu, P.; Qu, L.; Li, M.; Yang, B.; Li, H.; et al. Few-Layer Boron Nitride with Engineered Nitrogen Vacancies For Promoting Conversion of Polysulfide as a Cathode Matrix for Lithium–Sulfur Batteries. Chem. Eur. J. 2019, 25, 8112–8117. [Google Scholar] [CrossRef]
- Gao, W.J.; Liu, Y.Y.; Cao, C.C.; Zhang, Y.G.; Xue, Y.M.; Tang, C.C. Boron Nitride Nanosheets Wrapped by Reduced Graphene Oxide for Promoting Polysulfides Adsorption in Lithium-Sulfur Batteries. J. Colloid Interface Sci. 2022, 610, 527–537. [Google Scholar] [CrossRef]
- Gao, L.; Sheng, T.; Ren, H.; Liu, T.X.; Birkett, M.; Joo, S.W.; Huang, J. Boron Nitride Wrapped N-Doped Carbon Nanosheet As a Host for Advanced Lithium-Sulfur Battery. Appl. Surf. Sci. 2022, 597, 153687. [Google Scholar] [CrossRef]
- Kumari, S.; Chouhan, A.; Sharma, O.P.; Tawfik, S.A.; Spencer, M.J.S.; Bhargava, S.K.; Walia, S.; Ray, A.; Khatri, O.P. Alkali-Assisted Hydrothermal Exfoliation and Surfactant-Driven Functionalization of h-BN Nanosheets for Lubrication Enhancement. ACS Appl. Nano Mater. 2021, 4, 9143–9154. [Google Scholar] [CrossRef]
- Wu, H.; Yin, S.; Du, Y.; Wang, L.; Yang, Y.; Wang, H. Alkyl-Functionalized Boron Nitride Nanosheets as Lubricant Additives. ACS Appl. Nano Mater. 2020, 3, 9108–9116. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Kovalskii, A.M.; Firestein, K.L.; Loginov, P.A.; Sidorenko, D.A.; Shvindina, N.V.; Sukhorukova, I.V.; Shtansky, D.V. Hollow Spherical and Nanosheet-Base BN Nanoparticles as Perspective Additives to Oil Lubricants: Correlation between Large-Scale Friction Behavior and In Situ TEM Compression Testing. Ceram. Int. 2018, 44, 6801–6809. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Fraile, A.; Polcar, T.; Shtansky, D.V. Mechanisms of Friction and Wear Reduction by h-BN Nanosheet and Spherical W Nanoparticle Additives to Base Oil: Experimental Study and Molecular Dynamics Simulation. Tribol. Intern. 2020, 151, 106493. [Google Scholar] [CrossRef]
- E, S.; Ye, X.; Wang, M.; Huang, J.; Ma, Q.; Jin, Z.; Ning, D.; Lu, Z. Enhancing the Tribological Properties of Boron Nitride by Bioinspired Polydopamine Modification. Appl. Surf. Sci. 2020, 529, 147054. [Google Scholar] [CrossRef]
- Bai, C.; Yang, Z.; Zhang, J.; Zhang, B.; Yu, Y.; Zhang, J. Friction Behavior and Structural Evolution of Hexagonal Boron Nitride: A Relation to Environmental Molecules Containing –OH Functional Group. ACS Appl. Mater. Interfaces 2022, 14, 19043–19055. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J. Boron Nitride Aerogels Consisting of Varied Superstructures. Nanoscale Adv. 2020, 2, 149–155. [Google Scholar] [CrossRef]
- Hyun, W.J.; de Moraes, A.C.M.; Lim, J.-M.; Downing, J.R.; Park, K.-Y.; Tan, M.C.; Hersam, M.T.Z. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano 2019, 13, 9664–9672. [Google Scholar] [CrossRef] [PubMed]
- Hyun, W.-J.; Chaney, L.E.; Downing, J.R.; de Moraes, A.C.M.; Hersam, M.C. Printable Hexagonal Boron Nitride Ionogels. Faraday Discuss. 2021, 227, 92–194. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Q.; Hao, M.; Hu, Y.; Lin, Z.; Peng, L.; Wang, T.; Ren, X.; Wang, C.; Zhao, Z.; et al. Double Negative-Index Ceramic Aerogels for Thermal Superinsulation. Science 2019, 363, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Ozden, S.; Dutta, N.S.; Randazzo, K.; Tsafack, T.; Arnold, C.B.; Priestley, R.D. Interfacial Engineering to Tailor the Properties of Multifunctional Ultralight Weight hBN-Polymer Composite Aerogels. ACS Appl. Mater. Interfaces 2021, 13, 13620–13628. [Google Scholar] [CrossRef]
- Wang, B.; Li, G.; Xu, L.; Liao, J.; Zhang, X. Nanoporous Boron Nitride Aerogel Film and Its Smart Composite with Phase Change Materials. ACS Nano 2020, 14, 16590–16599. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Wu, Z.; Dai, S.; Jiang, D. Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO. ACS Appl. Mater. Interfaces 2018, 10, 6694–6700. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, R.; Zhou, D.; Zeng, F.; Yan, W.; Cai, S. The Charge Transfer Feature and High Photocatalytic Activity of S-Scheme TiO2/h-BN Heterostructure from First-Principles. Appl. Surf. Sci. 2022, 586, 152765. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, X.; Li, H.; Li, H.; Wei, M.; Xiao, J.; Liu, Z.; Chen, M.; Fu, Q.; Bao, X. Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule–Metal Interaction and Metal-Catalyzed Reactions. Nano Lett. 2015, 15, 3616–3623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.-F.; Qiao, Y.-Y.; Wang, G.-C. First-Principles Theoretical Study on Dry Reforming of Methane over Perfect and Boron-Vacancy-Containing h-BN Sheet-Supported Ni Catalysts. Phys. Chem. Chem. Phys. 2021, 23, 617–627. [Google Scholar] [CrossRef]
- Gao, M.; Nakahara, M.; Lyalin, A.; Taketsugu, T. Catalytic Activity of Gold Clusters Supported on the H-BN/Au(111) Surface for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2021, 125, 1334–1344. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, D.-Y.; Su, Y. The Effect of Grain Boundary in Hexagonal Boron Nitride on Catalytic Activity of Nitrogen Reduction Reaction. Appl. Surf. Sci. 2022, 593, 153468. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc. 2017, 139, 12480–12487. [Google Scholar] [CrossRef]
- Lu, Z.; Lv, P.; Yang, Z.; Li, S.; Ma, D.; Wu, R. A Promising Single Atom Catalyst for CO Oxidation: Ag on Boron Vacancies of h-BN Sheets. Phys. Chem. Chem. Phys. 2017, 19, 16795–16805. [Google Scholar] [CrossRef]
- Fang, L.; Cao, Z. CO2 Activation and Capture on a Si-Doped h-BN Sheet: Insight into the Local Bonding Effect of Single Si Sites. J. Phys. Chem. C 2021, 125, 5048–50556. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, K. First-Principles Calculations of the Hydrolysis Mechanism of Hexagonal Boron Nitride Nanosheets: Implications for Preventing Hydrolytic Degradation. ACS Appl. Nano Mater. 2022, 5, 2501–2509. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Lin, S. Defective Hexagonal Boron Nitride Nanosheet on Ni(111) and Cu(111): Stability, Electronic Structures, and Potential Applications. ACS Appl. Mater. Interfaces 2016, 8, 24238–24247. [Google Scholar] [CrossRef] [PubMed]
- Salavati-fard, T.; Wang, B. Significant Role of Oxygen Dopants in Photocatalytic PFCA Degradation over H-BN. ACS Appl. Mater. Interfaces 2021, 13, 46727–46737. [Google Scholar] [CrossRef]
- Abraham, B.M.; Parey, V.; Jyothirmai, M.V.; Singh, J.K. Tuning the Structural Properties and Chemical Activities of Graphene and Hexagonal Boron Nitride for Efficient Adsorption of Steroidal Pollutants. Appl. Surf. Sci. 2022, 580, 152110. [Google Scholar] [CrossRef]
- Chen, Y.; Quek, S.Y. Photophysical Characteristics of Boron Vacancy-Derived Defect Centers in Hexagonal Boron Nitride. J. Phys. Chem. C 2021, 125, 21791–21802. [Google Scholar] [CrossRef]
- Xu, K.; Tang, Y.; Wu, C.; Zhao, Z.; Sun, L.; Li, Y. Achieving Optical Phosphine Sensitive h-BN Nanosheets through Transition Metal Doping. Appl. Surf. Sci. 2022, 585, 152700. [Google Scholar] [CrossRef]
- He, Z.; Zhou, R. Exploring an In-Plane Graphene and Hexagonal Boron Nitride Array for Separation of Single Nucleotides. ACS Nano 2021, 15, 11704–11710. [Google Scholar] [CrossRef]
- Raad, N.H.; Manavizadeh, N.; Frank, I.; Nadimi, E. Gas Sensing Properties of a Two-Dimensional Graphene/h-BN Multi-Heterostructure toward H2O, NH3 and NO2: A First Principles Study. Appl. Surf. Sci. 2021, 565, 150454. [Google Scholar] [CrossRef]
- Shimada, N.H.; Minamitani, E.; Watanabe, S. Theoretical Prediction of Superconductivity in Monolayer h-BN Doped with Alkaline-Earth Metals (Ca, Sr, Ba). J. Phys. Condens. Matter. 2020, 32, 435002. [Google Scholar] [CrossRef]
- Kvashnin, D.G.; Matveev, A.T.; Lebedev, O.I.; Yakobson, B.I.; Golberg, D.; Sorokin, P.B.; Shtansky, D.V. Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. J. Phys. Chem. Lett. 2018, 9, 5086–5091. [Google Scholar] [CrossRef]
- Guo, H.; Yang, T.; Xuan, X.; Zhang, Z.; Guo, W. Flexoelectricity in Hexagonal Boron Nitride Monolayers. Extrem. Mech. Lett. 2022, 52, 101669. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Song, J.; Ding, Q. Study on the Tribological Properties of Copper Coated by Graphene and h-BN from the Atomic Scale. Appl. Surf. Sci. 2022, 573, 151548. [Google Scholar] [CrossRef]
- Thiemann, F.L.; Schran, C.; Rowe, P.; Müller, E.A.; Michaelides, A. Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick. ACS Nano 2022, 16, 10775–10782. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Larionov, K.V.; Popov, Z.I.; Watanabe, T.; Amemiya, K.; Entani, S.; Avramov, P.V.; Sakuraba, Y.; Naramoto, H.; Sorokin, P.B.; et al. Graphene/Half-Metallic Heusler Alloy: A Novel Heterostructure toward High-Performance Graphene Spintronic Devices. Adv. Mater. 2019, 32, 1905734. [Google Scholar] [CrossRef] [PubMed]
- Larionov, K.V.; Pereda, J.J.P.; Sorokin, P.B. A DFT Study on Magnetic Interfaces Based on Half-Metallic Co2FeGe1/2Ga1/2 with h-BN and MoSe2 Monolayers. Phys. Chem. Chem. Phys. 2022, 24, 1023–1028. [Google Scholar] [CrossRef]
- Li, X.-D.; Cheng, X.-L. Predicting the Structural and Electronic Properties of Two-Dimensional Single Layer Boron Nitride Sheets. Chem. Phys. Lett. 2018, 694, 102–106. [Google Scholar] [CrossRef]
- Shahrokhi, M.; Mortazavi, B.; Berdiyorov, G.R. New Two-Dimensional Boron Nitride Allotropes with Attractive Electronic and Optical Properties. Solid State Commun. 2017, 253, 51–56. [Google Scholar] [CrossRef]
- Wei, J.; Kong, W.; Xiao, X.; Wang, R.; Gan, L.-Y.; Fan, J.; Wu, X. Dirac Fermions in the Boron Nitride Monolayer with a Tetragon. J. Phys. Chem. Lett. 2022, 13, 5508–5513. [Google Scholar] [CrossRef]
- Li, F.-Y.; Yang, D.-C.; Qiao, L.; Eglitis, R.I.; Jia, R.; Yi, Z.-J.; Zhang, H.-X. Novel 2D Boron Nitride with Optimal Direct Band Gap: A Theoretical Prediction. Appl. Surf. Sci. 2022, 578, 151929. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Li, Q.; Ma, Y.; Chen, C. Pressure-Induced Evolution of Crystal and Electronic Structure of Ammonia Borane. J. Phys. Chem. Lett. 2021, 12, 2036–2043. [Google Scholar] [CrossRef]
- Ahmad, A.U.; Liang, H.; Abbas, Q.; Ali, S.; Iqbal, M.; Farid, A.; Abbas, A.; Farooq, Z. A Novel Mechano-Chemical Synthesis Route for Fluorination of Hexagonal Boron Nitride Nanosheets. Ceram. Int. 2019, 45, 19173–19181. [Google Scholar] [CrossRef]
- Shevelev, V.O.; Bokai, K.A.; Vilkov, O.Y.; Makarova, A.A.; Usachov, D.Y. Oxidation of H-BN on Strongly and Weakly Interacting Metal Surfaces. Nanotechnology 2019, 30, 234004. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Li, Y.; Wu, H.; Wei, W.; Ning, Y.; Cui, Y.; Fu, Q.; Bao, X. Structural Transformation of h-BN Overlayers on Pt(111) in Oxidative Atmospheres. Phys. Chem. Chem. Phys. 2018, 20, 11013–11020. [Google Scholar] [CrossRef] [PubMed]
- Popov, Z.I.; Tikhomirova, K.A.; Demin, V.A.; Chowdhury, S.; Oganov, A.R.; Kvashnin, A.G.; Kvashnin, D.G. Novel Two-Dimensional Boron Oxynitride Predicted Using the USPEX Evolutionary Algorithm. Phys. Chem. Chem. Phys. 2021, 23, 26178–26184. [Google Scholar] [CrossRef] [PubMed]
- Erohin, S.V.; Ruan, Q.; Sorokin, P.B.; Yakobson, B.I. Nano-Thermodynamics of Chemically Induced Graphene-Diamond Transformation. Small 2020, 16, 2004782. [Google Scholar] [CrossRef]
- Sorokin, P.B.; Yakobson, B.I. Two-Dimensional Diamond—Diamane: Current State and Further Prospects. Nano Lett. 2021, 21, 5475–5484. [Google Scholar] [CrossRef]
- Cellini, F.; Lavini, F.; Chen, E.; Bongiorno, A.; Popovic, F.; Hartman, R.L.; Dingreville, R.; Riedo, E. Pressure-Induced Formation and Mechanical Properties of 2D Diamond Boron Nitride. Adv. Sci. 2021, 8, 2002541. [Google Scholar] [CrossRef]
- Barboza, A.P.M.; Matos, M.J.S.; Chacham, H.; Batista, R.J.C.; de Oliveira, A.B.; Mazzoni, M.S.C.; Neves, B.R.A. Compression-Induced Modification of Boron Nitride Layers: A Conductive Two-Dimensional BN Compound. ACS Nano 2018, 12, 5866–5872. [Google Scholar] [CrossRef]
- Barboza, A.P.M.; Souza, A.C.R.; Matos, M.J.S.; Brant, J.C.; Barbosa, T.C.; Chacham, H.; Mazzoni, M.S.C.; Neves, B.R.A. Graphene/h-BN Heterostructures under Pressure: From van Der Waals to Covalent. Carbon 2019, 155, 108–113. [Google Scholar] [CrossRef]
- Kvashnin, D.G.; Kvashnina, O.P.; Avramov, P.V.; Sorokin, P.B.; Kvashnin, A.G. Novel Hybrid C/BN Two-Dimensional Heterostructures. Nanotechnology 2017, 28, 085205. [Google Scholar] [CrossRef]
Material | BNNP Content (%) | Pathogens | Ref. |
---|---|---|---|
PNMPy-BNNPs | 10.0 | E. coli, S. aureus, P. aeruginosa, E. faecalis | [124] |
LDPE-BNNPs | 5.0–20.0 | E. coli, S. aureus, P. aeruginosa, S. epidermidis | [125] |
PHA/CH-BNNPs | 0.1–1.0 | E. coli K1 Methicillin-resistant S. aureus | [126] |
QAC-BNNPs-PP | 3.0–10.0 | E. coli Carolina #155065A S. aureus Carolina #155556 | [127] |
CEL-BNNPs | 1.0–3.0 | E. coli K12 (ATCC 29425) S. epidermidis ATCC 49461 | [128] |
MIC of BN (mg/mL) | |||
BNNPs | 15 | Multidrug resistant E. coli (12 strains) | [129] |
BNNPs | 1.62 | S. mutans 3.3 | [130] |
400 | S. mutans ATTC 25175 | ||
400 | S. pasteuri M3 | ||
3.25 | Candida sp. M25 | ||
BNNPs | 256 | E. coli | [131] |
128 | B. cereus | ||
128 | S. aureus | ||
128 | E. hirae | ||
128 | P. aeruginosa | ||
256 | L. pneumophila subsp. pneumophiia | ||
256 | C. albicans | ||
BNNSs | 100 | E. coli DH5α | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shtansky, D.V.; Matveev, A.T.; Permyakova, E.S.; Leybo, D.V.; Konopatsky, A.S.; Sorokin, P.B. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials 2022, 12, 2810. https://doi.org/10.3390/nano12162810
Shtansky DV, Matveev AT, Permyakova ES, Leybo DV, Konopatsky AS, Sorokin PB. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials. 2022; 12(16):2810. https://doi.org/10.3390/nano12162810
Chicago/Turabian StyleShtansky, Dmitry V., Andrei T. Matveev, Elizaveta S. Permyakova, Denis V. Leybo, Anton S. Konopatsky, and Pavel B. Sorokin. 2022. "Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids" Nanomaterials 12, no. 16: 2810. https://doi.org/10.3390/nano12162810
APA StyleShtansky, D. V., Matveev, A. T., Permyakova, E. S., Leybo, D. V., Konopatsky, A. S., & Sorokin, P. B. (2022). Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials, 12(16), 2810. https://doi.org/10.3390/nano12162810