Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer
Abstract
:1. Introduction
2. Structures of TOSC and IOSC Organic Nano Photodiodes and Choice of Materials
TOSC and IOSC NPD Structure Using BHJ
- A.
- In this model, the ITO material has been used as a transparent electrode due to its various features. In the author’s previous works [28,29,30], graphene has been utilized as an electrode due to its biocompatibility and unique properties that suit the subretinal implant application. However, there were some shortcomings while fabricating the graphene-based OSC. Therefore, in this present analysis, the authors employ the ITO due to its electrical conductivity, optical transparency, simplicity of deposition as a thin layer, and chemical resistance to moisture. The film’s conductivity improves with thickness and charge carrier concentration, while its transparency diminishes. For applications demanding low-cost, large-area manufacturing, ITO is an attractive solution [31,32].
- B.
- The PEDOT:PSS layer is commonly employed as an HTL in both OSC and DSSC. This is due to the fact that it smoothens the ITO electrode surface, which is critical in OSC and DSSC. Additionally, due to its strong electrical conductivity and excellent oxidation resistance, it is well suited for electromagnetic shielding and noise suppression applications. In the visible, near-infrared, and ultraviolet light spectrums, PEDOT:PSS-based polymeric films exhibit excellent transparency, with almost 100% absorption from 900 to 2000 nm. Moreover, they are transparent in the near-infrared and near-ultraviolet regions. However, PEDOT offers the conduction properties, and PSS (in contact with water) results in the formation of a hydrated colloidal solution [33].
- C.
- The s-SWCNTs provide a unique combination of the solution processability, electrical tunability, and robust absorption of organic semiconductors with high charge mobilities, as well as outstanding chemical stability. Since they are strong optical absorbers with adjustable band-gaps, transfer energy and charge on ultrafast timescales are reasonably chemically stable. Additionally, solution-processable s-SWCNTs are attractive photo absorbers for next-generation photovoltaic solar cells and photodetectors. Due to these characteristics, s-SWCNT is the ideal donor material for this research [34,35].
- D.
- Fullerene (60) or C60 is composed of 60 carbons, with 20 hexagonal and 12 pentagonal sections. Fullerene does not have a saturated state. Three carbons are linked together rather than four by the fused rings of carbons 5 and 6, so-called carbon 60 fullerenes. Fullerene is a molecule that can accept electrons. Depending on their properties, it can be employed in thermal evaporation systems as electron acceptors. Moreover, it can be used as an interface layer. C60 fullerene can be better as an electron acceptor since it is more compatible and can deliver suitable composites with the donor material [36].
- E.
- One of the most common ETLs in PSCs and OSCs is Titanium Dioxide (TiO2). It is one of the widely utilized ETLs since it is very good at transmitting light in the visible range [37].
- F.
- The work function of the cathode material should be lower than the anode material. The work function of aluminum is 4.2 eV, which is smaller than the ITO work function of 5.1 eV, and thus meets the criteria.
3. Device Design Methodology
4. Results and Analysis
4.1. Effect of Active Layer Thickness Variation
4.2. Optimized Performance of TOSC and IOSC Using s-SWCNT:C60 Active Layer
5. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ananthakumar, S.; Kumar, J.R.; Babu, S.M. Third-Generation Solar Cells: Concept, Materials and Performance—An Overview. Emerg. Nanostructured Mater. Energy Environ. Sci. 2019, 23, 305–339. [Google Scholar]
- Li, Y.; Huang, X.; Ding, K.; Sheriff, H.K.M.; Ye, L.; Liu, H.; Li, C.Z.; Ade, H.; Forrest, S.R. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, G.; Lopes, T.; Lidzey, D.G.; Mendes, A. Progress in upscaling organic photovoltaic devices. Adv. Energy Mater. 2021, 11, 1–29. [Google Scholar] [CrossRef]
- Williams, R. Becquerel photovoltaic effect in binary compounds. J. Chem. Phys. 1959, 32, 1505–1514. [Google Scholar] [CrossRef]
- Loferski, J.J. The first forty years: A brief history of the modern photovoltaic age. Prog. Photovolt. Res. Appl. 1993, 1, 67–78. [Google Scholar] [CrossRef]
- Goetzberger, A.; Hebling, C.; Schock, H.W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. [Google Scholar] [CrossRef]
- Pillay, D.; Srivastava, V.M. Realization with fabrication of dual-gate MOSFET based source follower. Silicon 2022, 1–11. [Google Scholar] [CrossRef]
- Ohl, R.S. Light-Sensitive Electric Device. U.S. Patent 2402662, 25 June 1946. [Google Scholar]
- Alferov, Z.I.; Andreev, V.M.; Kagan, M.B.; Prostasov, I.I.; Trofim, V.G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond. 1971, 4, 1573–1575. [Google Scholar]
- Chen, D.; Zhang, C.; Wang, Z.; Zhang, J.; Feng, Q.; Xu, S.; Zhou, X.; Hao, Y. Performance comparison of conventional and inverted organic bulk hetero-junction solar cells from optical and electrical aspects. IEEE Trans. Electron Devices 2013, 60, 451–457. [Google Scholar] [CrossRef]
- Malti, I.; Chiali, A.; Sari, N.C. Numerical study of electrical behavior of P3HT/PCBM bulk hetero-junction solar cell. Appl. Sol. Energy 2016, 52, 122–127. [Google Scholar] [CrossRef]
- Brabec, C.J. Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 2004, 83, 273–292. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor hetero-junctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Marinova, N.; Valero, S.; Delgado, J.L. Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci. 2016, 488, 373–389. [Google Scholar] [CrossRef]
- Kumavat, P.P.; Sonar, P.; Dalal, D.S. An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew. Sustain. Energy Rev. 2017, 78, 1262–1287. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Q.; Jiang, L.; Cao, G. ZnO cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 2015, 8, 3442–3476. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, P.; Sun, X.; Tan, S.; Ke, L.; Kyaw, A. An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl. Phys. Lett. 2009, 95, 153304. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, S.; Ke, L.; Liu, P.; Kyaw, A.; Sun, X.; Lo, G.; Kwong, D. Optimization of an inverted organic solar cell. Sol. Energy Mater. Sol. Cells 2010, 94, 985–991. [Google Scholar] [CrossRef]
- Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; Choulis, S.; Brabec, C. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 2006, 89, 233517. [Google Scholar] [CrossRef]
- White, M.S.; Olson, D.; Shaheen, S.; Kopidakis, N.; Ginley, D.S. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 2006, 89, 143517. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, X.; Tang, W.; Zhang, J.; Zhuo, Z.; Wang, J.; Xu, Z.; Wang, Y. Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1785–1799. [Google Scholar] [CrossRef]
- Gilot, J.; Barbu, I.; Wienk, M.M.; Janssen, R.A. The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study. Appl. Phys. Lett. 2007, 91, 113520. [Google Scholar] [CrossRef]
- Behjat, A.; Torabi, N.; Dossthosseini, F. Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk hetero-junction solar cells: A theoretical and experimental study. Int. J. Opt. Photonics 2014, 8, 3–11. [Google Scholar]
- Yang, C.; Zhang, C.; Chen, C.; Ren, Y.; Shen, H.; Tong, J.; Du, S.; Xia, Y.; Li, J. A new alcohol-soluble polymer PFN-ID as cathode interlayer to optimize performance of conventional polymer solar cells by increasing electron mobility. Energy Technol. 2022, 10, 2200199. [Google Scholar] [CrossRef]
- Xue, L.; Liu, X.; Wang, Q.; Yang, M.; Du, S.; Yang, C.; Tong, J.; Xia, Y.; Li, J. Improved performance of organic solar cells by utilizing green non-halogen additive to modulate active layer morphology. Energy Technol. 2022, 2200504. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.; Li, H.; Qin, J.; Du, S.; Lu, X.; Tong, J.; Yang, C.; Li, J. Utilizing non-conjugated small-molecular tetrasodium iminodisuccinateas electron transport layer enabled improving efficiency of organic solar cells. Opt. Mater. 2022, 129, 112520. [Google Scholar] [CrossRef]
- Moorthy, V.M.; Rathnasami, J.D.; Pattan, A.S. Simulation and analysis of nano photo diode arrays using CNT’s and graphene nano materials for sub-retinal implant. In Proceedings of the ISSS National Conference on MEMS, Smart Materials, Structures and Systems, Kanpur, India, 28–30 September 2016; pp. 1–8. [Google Scholar]
- Moorthy, V.M.; Rathnasami, J.D.; Pattan, S. Comparison studies of planar and bulk hetero junction nano photo diodes using carbon nano tube’s (CNT) and graphene for sub-retinal implant. In Proceedings of the IEEE Conference on Emerging Devices and Smart Systems–ICEDSS, Tiruchengode, India, 2–3 March 2018; pp. 197–202. [Google Scholar]
- Moorthy, V.M.; Sugantharathnam, M.; Rathnasami, J.D.; Pattan, S. Design and characterization of graphene-based nano-photodiode array device for photo-stimulation of subretinal implant. Micro Nano Lett. 2019, 14, 1131–1135. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.J.; Lee, J.H.; Kal, J.; Hahn, J.; Kim, H.K. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Org. Electron. 2016, 30, 112–121. [Google Scholar] [CrossRef]
- Lai, T.; Tsang, S.; Manders, J.; Chen, S.; Franky, S. Properties of interlayer for organic photovoltaic. Mater. Today 2013, 16, 424–432. [Google Scholar] [CrossRef]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research progress on polymer solar cell based on PEDOT: PSS electrodes. Polymer 2020, 12, 145. [Google Scholar] [CrossRef]
- Dargar, S.K.; Srivastava, V.M. Analysis of short channel effects in multiple-gate (n,0)-Carbon Nanotube FETs. J. Eng. Sci. Technol. 2019, 14, 3282–3293. [Google Scholar]
- Swapna, P.; Rao, Y.S. Simulation studies on semiconducting single walled carbon nanotube based bilayer and bulk hetero junction organic solar cells. In Proceedings of the 4th International Conference on Materials Processing and Characterization, Hyderabad, India, 14–15 February 2015; pp. 1634–1641. [Google Scholar]
- Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Photo induced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Coates, N.E.; Cho, S.; Cho, N.S.; Moses, D.; Bazan, G.C.; Lee, K.; Heeger, A.J. Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1, 8-octanedithiol. Appl. Phys. Lett. 2008, 92, 243308. [Google Scholar] [CrossRef]
- Zhou, C.X.; Sun, J.X.; Deng, Z.J.; Zhou, S. Study of applicability of Boltzmann-statistics and two mobility models for organic semiconductors. Semiconductors 2013, 47, 1351–1357. [Google Scholar] [CrossRef]
- Srivastava, V.M.; Singh, G. MOSFET Technologies for Double-Pole Four Throw Radio Frequency Switch; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Zhou, T.C.; Chen, G.; Liao, R.J.; Xu, Z. Charge trapping and detrapping in polymeric materials: Trapping parameters. J. Appl. Phys. 2011, 110, 043724. [Google Scholar] [CrossRef]
- Liu, N.; Chen, G. Changes in charge trapping/detrapping in polymeric materials and its relation with aging. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 800–803. [Google Scholar]
- Shi, X.H.; Sun, J.X.; Xiong, C.H.; Sun, L. Exponential-type density of states with clearly cutting tail for organic semiconductors. Org. Electron. 2016, 30, 60–66. [Google Scholar] [CrossRef]
- MacKenzie, R.C.; Shuttle, C.G.; Chabinyc, M.L.; Nelson, J. Extracting microscopic device parameters from transient photocurrent measurements of P3HT: PCBM solar cells. Adv. Energy Mater. 2012, 2, 662–669. [Google Scholar] [CrossRef]
- Erray, M.; Hanine, M.; Boufounas, E.-M.; El Amrani, A. Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell. Eur. Phys. J. Appl. Phys. 2018, 82, 1–14. [Google Scholar] [CrossRef]
- Apaydın, D.H.; Yıldız, D.E.; Cirpan, A.; Toppare, L. Optimizing the organic solar cell efficiency: Role of the active layer thickness. Sol. Energy Mater. Sol. Cells 2013, 113, 100–105. [Google Scholar] [CrossRef]
- Nam, Y.M.; Huh, J.; Jo, W.H. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1118–1124. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Q.; Gao, J.; Wang, J.; Xu, C.; Ma, X.; Zhang, F. Recent progress of organic photovoltaics with efficiency over 17%. Energies 2021, 14, 4200. [Google Scholar] [CrossRef]
- Banerjee, S.; Gupta, S.K.; Singh, A.; Garg, A. Buffer layers in inverted organic solar cells and their impact on the interface and device characteristics: An experimental and modeling analysis. Org. Electron. 2016, 37, 228–238. [Google Scholar] [CrossRef]
- Gowthaman, N.; Srivastava, V.M. Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. J. Mater. Sci. 2022, 57, 8381–8392. [Google Scholar] [CrossRef]
- Xu, C.; Jin, K.; Xiao, Z.; Zhao, Z.; Ma, X.; Wang, X.; Li, J.; Xu, W.; Zhang, S.; Ding, L.; et al. Wind band-gap polymer with narrow photon harvesting in visible light range enable efficient semitransparent organic photovoltaics. Adv. Funct. Mater. 2021, 32, 2107934. [Google Scholar] [CrossRef]
- Chang, S.Y.; Cheng, P.; Li, G.; Yang, Y. Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2018, 2, 1039–1054. [Google Scholar] [CrossRef]
- Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855–2859. [Google Scholar] [CrossRef]
- Borazan, I.; Altin, Y.; Demir, A.; Bedeloglu, A.C. Characterization of organic solar cells using semiconducting polymers with different band-gaps. J. Polym. Eng. 2019, 39, 636–641. [Google Scholar] [CrossRef]
- Luceno-Sanchez, J.A.; Diez-Pascual, A.M.; Capilla, R.P. Materials for photovoltaic: State of art and recent developments. Int. J. Mol. Sci. 2019, 20, 976. [Google Scholar] [CrossRef] [PubMed]
Parameter | TOSC | IOSC |
---|---|---|
Active layer thickness (nm) | 200 | 200 |
Active layer material | s-SWCNT:C60 | s-SWCNT:C60 |
Voc (V) | 0.865 | 0.89 |
Jsc (mA/cm2) | 15.46 | 18.02 |
η | 9.5 | 10.4 |
FF% | 87 | 89.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moorthy, V.M.; Srivastava, V.M. Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer. Nanomaterials 2022, 12, 2844. https://doi.org/10.3390/nano12162844
Moorthy VM, Srivastava VM. Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer. Nanomaterials. 2022; 12(16):2844. https://doi.org/10.3390/nano12162844
Chicago/Turabian StyleMoorthy, Vijai M., and Viranjay M. Srivastava. 2022. "Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer" Nanomaterials 12, no. 16: 2844. https://doi.org/10.3390/nano12162844
APA StyleMoorthy, V. M., & Srivastava, V. M. (2022). Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C60 as Active Layer. Nanomaterials, 12(16), 2844. https://doi.org/10.3390/nano12162844