Box–Behnken Design: Optimization of Proanthocyanidin-Loaded Transferosomes as an Effective Therapeutic Approach for Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compatibility Evaluation Using Fourier Transform Infra-Red Spectroscopy (FTIR)
2.3. Preparation and Optimization of PAC-Loaded Transferosomes
2.4. Experimental Design
2.5. Determination of Percentage Entrapment Efficiency (PEE)
2.6. Size, Polydispersity Index, and Zeta Potential
2.7. Scanning Electron Microscopy (SEM)
2.8. Transmission Electron Microscopy (TEM)
2.9. Drug Content
2.10. In Vitro Drug Diffusion Studies
Method for Egg Membrane Preparation
2.11. Preparation of Skin for In Vitro Skin Permeation Study
Ex Vivo Skin Permeation Study
2.12. Physical Stability of the Transferosomes
3. Results and Discussion
3.1. Compatibility Evaluation Using Fourier Transform Infra-Red Spectroscopy (FTIR)
3.2. Preparation and Optimization of PAC-Loaded Transferosomes
3.2.1. Response 1 (Y1): Effect of Independent Variables on PEE (%)
3.2.2. Response 2 (Y2): Effect of Independent Variables on In Vitro Diffusion at 6 h
3.2.3. Numerical Point Prediction Method
3.3. Size, Polydispersity Index, and Zeta Potential
3.4. Scanning Electron Microscopy (SEM)
3.5. Transmission Electron Microscopy (TEM)
3.6. Drug Content
3.7. In Vitro Drug Diffusion Studies
3.8. Ex Vivo Skin Permeation Study
3.9. Physical Stability of the Transferosomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prajapati, S.T.; Patel, C.G.; Patel, C.N. Transfersomes: A Vesicular Carrier System for Transdermal Drug Delivery. Asian J. Biochem. Pharm. Res. 2011, 1, 507–524. [Google Scholar]
- Rajan, R.; Jose, S.; Mukund, V.P.; Vasudevan, D.T. Transferosomes—A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Tech. Res. 2011, 2, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm. 2001, 228, 43–52. [Google Scholar] [CrossRef]
- Van Zyl, L.; Viljoen, J.M.; Haynes, R.K.; Aucamp, M.; Ngwane, A.H.; Du Plessis, J. Topical Delivery of Artemisone, Clofazimine and Decoquinate Encapsulated in Vesicles and Their in vitro Efficacy Against Mycobacterium tuberculosis. AAPS PharmSciTech 2019, 20, 33. [Google Scholar] [CrossRef]
- Hadidi, N.; Saffari, M.; Faizi, M. Optimized Transferosomal Bovine Lactoferrin (BLF) as a Promising Novel Non-Invasive Topical Treatment for Genital Warts Caused by Human Papiluma Virus (HPV). Iran J. Pharm. Res. 2018, 17, 12–23. [Google Scholar]
- Fathi-Azarbayjani, A.; Ng, K.X.; Chan, Y.W.; Chan, S.Y. Lipid Vesicles for the Skin Delivery of Diclofenac: Cerosomes vs. Other Lipid Suspensions. Adv. Pharm. Bull. 2015, 5, 25–33. [Google Scholar]
- AEMPS. Ambisome 50 mg, Powder for Infusion, Data Sheet. Agencia Española de Medicamentosy Productos Sanitarios. 2017. Available online: https://cima.aemps.es/cima/dochtml/ft/61117/FT-61117.html (accessed on 6 September 2019).
- Cevc, G. Lipid Polymorphism: Structure and Stability of Lyotropic Mesophases of Phospholipids; Marcel Dekker Inc.: New York, NY, USA, 1993; pp. 1–988. [Google Scholar]
- Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012, 20, 355–363. [Google Scholar] [CrossRef]
- Habib Ali, M.; Kirby, D.J.; Mohammed, A.R.; Perrie, Y. Solubilisation of drugs within liposomal bilayers: Alternatives to cholesterol as a membrane stabilizing agent. J. Pharm. Pharmacol. 2010, 62, 1646–1655. [Google Scholar]
- Pandey, S.; Manish, G.; Viral, D.; Jarina, F. Transferosomes: A novel approach for transdermal drug delivery. Der. Pharm. Lett. 2009, 1, 143–150. [Google Scholar]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Ky, I.; Le Floch, A.; Zeng, L.; Pechamat, L.; Jourdes, M.; Teissedre, P.L. Tannins. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 247–255. [Google Scholar]
- de la Iglesia, R.; Milagro, F.I.; Campión, J.; Boqué, N.; Martínez, J.A. Healthy properties of proanthocyanidins. Biofactors 2010, 36, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Dong, C. Protective effect of proanthocyanidins in cadmium induced neurotoxicity in mice. Drug Res. 2015, 65, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Neogi, T. The epidemiology and impact of pain in Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Tosi, L.L.; Coutts, R.D.; Enoka, R.M.; Hart, D.A.; Nicolella, D.P.; Berkley, K.J.; Sluka, K.A.; Kwoh, C.K.; O’Connor, M.I.; et al. Addressing the gaps: Sex differences in osteoarthritis of the knee. Biol. Sex Differ. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.D.; Golightly, Y.M.; Hill, C. Epidemiology of osteoarthritis state of the evidence. Curr. Opin. Rheumatol. 2015, 27, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Englund, M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract. Res. Clin. Rheumatol. 2010, 24, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Song, X.; Sun, X.; Sun, G.; Du, F. Immunomodulatory and antitumor activities of grape seed proanthocyanidins. J. Agri. Food Chem. 2011, 59, 11543–11547. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, H.S.; Bang, B.R.; Lee, Y.S.; Park, M.Y.; Moon, K.A.; Kim, T.B.; Lee, K.Y.; Moon, H.B.; Cho, Y.S. Grape seed proanthocyanidin extract attenuates allergic inflammation in murine models of asthma. J. Clin. Immunol. 2012, 32, 1292–1304. [Google Scholar] [CrossRef]
- Woo, Y.J.; Joo, Y.B.; Jung, Y.O.; Ju, J.H.; La Cho, M.; Oh, H.J.; Jhun, J.Y.; Park, M.K.; Park, J.S.; Kang, C.M. Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate-induced osteoarthritis. Exp. Mol. Med. 2011, 43, 561. [Google Scholar] [CrossRef]
- Imam, S.S.; Aqil, M.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: In vitro characterization and in vivo pharmacokinetic study. Drug Deliv. 2015, 22, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kaur, J.; Kulkarni, R.; Chaudhari, R. In-Vitro and Ex-Vivo Evaluation of Raloxifene Hydrochloride Delivery using Nano-transfersome based Formulations. J. Drug Deliv. Sci. Technol. 2018, 45, 151–158. [Google Scholar] [CrossRef]
- Ramkanth, S.; Madhusudhana Chetty, C.; Sudhakar, Y.; Thiruvengadarajan, V.S.; Anitha, P.; Gopinath, C. Development, characterization & in vivo evaluation of proniosomal based transdermal delivery system of Atenolol. Future J. Pharm. Sci. 2018, 4, 80–87. [Google Scholar]
- Siva, D.; Abinaya, S.; Rajesh, D.; Archunan, G.; Padmanabhan, P.; Gulyás, B.; Achiraman, S. Mollification of Doxorubicin (DOX)-Mediated Cardiotoxicity Using Conjugated Chitosan Nanoparticles with Supplementation of Propionic Acid. Nanomaterials 2022, 12, 502. [Google Scholar] [CrossRef]
- Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol. 2019, 71, 1508–1519. [Google Scholar] [CrossRef]
- Mohamed, J.M.M.; Alqahtani, A.; Menaa, F.; Kayarohanam, S.; Fatease, A.A.; Alqahtani, T.; Alamri, A.; El-Sherbiny, M.; Ramkanth, S.; Janakiraman, A.K. In Vitro Physical Characterizations and Docking Studies on Carvedilol Nanocrystals. Crystals 2022, 12, 988. [Google Scholar] [CrossRef]
- Khane, Y.; Benouis, K.; Albukhaty, S.; Sulaiman, G.M.; Abomughaid, M.M.; Al Ali, A.; Aouf, D.; Fenniche, F.; Khane, S.; Chaibi, W.; et al. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. Nanomaterials 2022, 12, 2013. [Google Scholar] [CrossRef]
- Maji, R.; Omolo, C.A.; Jaglal, Y.; Singh, S.; Devnarain, N.; Mocktar, C.; Govender, T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm. 2021, 607, 120990. [Google Scholar] [CrossRef]
- Vijaya Lakshmi, M.; Zafaruddinm, M.; Kuchana, V. Design and Characterization of transferosomal gel of Repaglinide. Int. Res. J. Pharma. Sci. 2015, 6, 38–42. [Google Scholar]
- Balch, D.A.; Cooke, R.A. A study of the composition of hen’s eggshell membranes. Ann Biol. Anim. Biochim. Biophys. 1970, 10, 13–25. [Google Scholar]
- Ramkanth, S.; Anitha, P.; Gayathri, R.; Mohan, S.; Babu, D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur. J. Pharm. Sci. 2021, 162, 105811. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, B.; Aggarwal, G.; Harikumar, S. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int. J. Pharm. Investig. 2014, 4, 65–76. [Google Scholar]
- Anitha, P.; Ramkanth, S.; Satyanarayana, S.V. QBD based Design and Characterization of Proniosomal Transdermal Delivery of Atenolol and Glibenclamide Combination: An Innovative Approach. Bull. Fac. Pharm. Cairo Univ. 2021, 59, 11–26. [Google Scholar] [CrossRef]
- Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Development and evaluation of microemulsion for transdermal delivery of insulin. ISRN Pharm. 2011, 2011, 780150. [Google Scholar] [CrossRef]
- Malakar, J.; Nayak, A.K.; Basu, A. Ondansetron HCl Microemulsions for Transdermal Delivery: Formulation and In Vitro Skin Permeation. ISRN Pharm. 2012, 2012, 428396. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1905–1917. [Google Scholar] [CrossRef]
- Mokale Vinod, J.; Patil Harshada, I.; Patil Ajit, P.; Shirude Priyanka, R.; Naik Jitendra, B. Formulation and optimization of famotidine proniosomes: An in vitro and ex vivo study. J. Exp. Nanosci. 2011, 11, 97–110. [Google Scholar] [CrossRef]
- Sagar, G.H.; Arunagirinathan, M.A.; Bellare, J.R. Self-assembled surfactant nanostructures important in drug delivery. Indian J. Exp. Biol. 2007, 45, 133–159. [Google Scholar]
- Mohd, Q.; Ameeduzzafar; Sarim, I.S.; Javed, A.; Javed, A.; Asgar, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: Invitro characterization and in-vivo activity. Biomed. Pharmacother. 2017, 93, 255–266. [Google Scholar]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine 2012, 8, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Jangdey, M.S.; Gupta, A.; Saraf, S.; Saraf, S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1452–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Zaafarany, G.M.; Awad, G.A.S.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010, 397, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Yu, S.Y.; Wu, P.C.; Huang, Y.B.; Tsai, Y.H. In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 2001, 215, 91–99. [Google Scholar] [CrossRef]
- Maestrelli, F.; Gonza lez-Rodrıguez, M.L.; Rabasco, A.M.; Mura, P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm. 2006, 312, 53–60. [Google Scholar] [CrossRef]
- Ashlesha, P.; Omase, B.; Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv. Transl. 2020, 10, 1495–1506. [Google Scholar]
- Das, B.; Sen, S.O.; Maji, R.; Nayak, A.K.; Sen, K.K. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex vivo permeation. J. Drug Deliv. Sci. Technol. 2017, 38, 59–71. [Google Scholar] [CrossRef]
- Cevc, G.; Gebauer, D.; Stieber, J.; Schatzlein, A.; Blume, G. Ultraflexible vesicles, Transferosomes, have an extremelly pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta 1998, 1368, 201–215. [Google Scholar] [CrossRef] [Green Version]
Independent Variables | Factors Level | ||
Low (−1) | Medium (0) | High (+1) | |
X1 = Phospholipid 90 G (mg) | 100 | 200 | 300 |
X2 = Tween 80 (mL) | 15 | 35 | 55 |
X3 = Sonication time (mins) | 15 | 25 | 35 |
Dependent variables | Constraints | ||
Y1 =Entrapment efficiency | Maximize | ||
Y2 = In vitro diffusion at 6 h | Maximize |
Formulation Code | Factor 1 | Factor 2 | Factor 3 | Response 1 | Response 2 |
---|---|---|---|---|---|
A: Phospholipid 90 G (mg) | B: Tween 80 (mg) | C: Sonication Time (min) | Y1: Encapsulation Efficiency (%) | Y2: In Vitro Diffusion (%) | |
PAC 1 | 100 | 35 | 15 | 81.23 | 25.38 |
PAC 2 | 300 | 35 | 35 | 84.57 | 26.43 |
PAC 3 | 300 | 55 | 25 | 79.89 | 24.97 |
PAC 4 | 100 | 15 | 25 | 78.45 | 24.52 |
PAC 5 | 300 | 35 | 15 | 85.81 | 26.82 |
PAC 6 | 200 | 15 | 15 | 80.67 | 25.21 |
PAC 7 | 200 | 55 | 35 | 78.97 | 24.65 |
PAC 8 | 100 | 35 | 35 | 80.39 | 25.12 |
PAC 9 | 200 | 35 | 25 | 79.25 | 24.76 |
PAC 10 | 200 | 35 | 25 | 79.45 | 24.67 |
PAC 11 | 200 | 35 | 25 | 78.80 | 24.62 |
PAC 12 | 300 | 15 | 25 | 83.72 | 26.16 |
PAC 13 | 200 | 55 | 15 | 79.40 | 24.81 |
PAC 14 | 100 | 55 | 25 | 77.29 | 24.15 |
PAC 15 | 200 | 15 | 35 | 79.92 | 24.97 |
Quadratic Model | Lack of Fit p-Value | Adjusted R2 | Predicted R2 |
---|---|---|---|
Response (Y1) | 0.2290 | 0.9516 | 0.7613 |
Response (Y2) | 0.1267 | 0.9592 | 0.7840 |
Regression equation of the fitted quadratic model PEE (Y1) = +79.17 + 2.08X1 − 0.9011X2 − 0.4071X3 − 0.6684X1 X2−0.1007X1 X3 + 0.0825X2 X3 + 1.97X12 − 1.29X22 + 1.86X32 In vitro diffusion at 6 h (Y2) = +24.68 + 0.6512X1 − 0.2850X2 − 0.1313X3 − 0.2050X1 X2 − 0.0325 X1 X3 + 0.0200X2 X3 + 0.6471X12 − 0.3804X22 + 0.6071X32 |
S. No. | Temperature | Physical Appearance | Drug Content (%) | PEE (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 0 | 15 | 30 | 45 | 0 | 15 | 30 | 45 | ||
1 | At 4 °C | Clear | Clear | Clear | Clear | 90.26 ± 0.32 | 90.06 ± 0.12 | 90.16 ± 0.43 | 90.16 ± 0.12 | 80.78 ± 0.12 | 80.23 ± 0.15 | 80.27 ± 0.10 | 80.34 ± 0.17 |
2 | At Room | Clear | Clear | Clear | Clear | 89.99 ± 1.22 | 89.32 ± 0.43 | 88.93 ± 0.32 | 88.23 ± 0.52 | 79.84 ± 1.35 | 78.64 ± 0.16 | 78.94 ± 1.27 | 78.74 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilarasan, N.; Yasmin, B.M.; Anitha, P.; Umme, H.; Cheng, W.H.; Mohan, S.; Ramkanth, S.; Janakiraman, A.K. Box–Behnken Design: Optimization of Proanthocyanidin-Loaded Transferosomes as an Effective Therapeutic Approach for Osteoarthritis. Nanomaterials 2022, 12, 2954. https://doi.org/10.3390/nano12172954
Tamilarasan N, Yasmin BM, Anitha P, Umme H, Cheng WH, Mohan S, Ramkanth S, Janakiraman AK. Box–Behnken Design: Optimization of Proanthocyanidin-Loaded Transferosomes as an Effective Therapeutic Approach for Osteoarthritis. Nanomaterials. 2022; 12(17):2954. https://doi.org/10.3390/nano12172954
Chicago/Turabian StyleTamilarasan, Neelakandan, Begum M. Yasmin, Posina Anitha, Hani Umme, Wan Hee Cheng, Sellapan Mohan, Sundarapandian Ramkanth, and Ashok Kumar Janakiraman. 2022. "Box–Behnken Design: Optimization of Proanthocyanidin-Loaded Transferosomes as an Effective Therapeutic Approach for Osteoarthritis" Nanomaterials 12, no. 17: 2954. https://doi.org/10.3390/nano12172954
APA StyleTamilarasan, N., Yasmin, B. M., Anitha, P., Umme, H., Cheng, W. H., Mohan, S., Ramkanth, S., & Janakiraman, A. K. (2022). Box–Behnken Design: Optimization of Proanthocyanidin-Loaded Transferosomes as an Effective Therapeutic Approach for Osteoarthritis. Nanomaterials, 12(17), 2954. https://doi.org/10.3390/nano12172954