Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/β-Ga2O3 Heterojunction
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Fabrication of the Ag2O/β-Ga2O3 Heterojunction Photodetector
2.3. Evaluation of the Ag2O/β-Ga2O3 Heterojunction Photodetector
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfe, R.L. Ultraviolet disinfection of potable water. Environ. Sci. Technol. 1990, 24, 768–773. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Li, C.; Lu, Y.; Tong, X.-W.; Liang, F.-X.; Zhao, X.-Y.; Wu, D.; Xie, C.; Luo, L.-B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Ushida, S.; Nagase, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett. 2017, 111, 191103. [Google Scholar] [CrossRef]
- Arora, K.; Goel, N.; Kumar, M.; Kumar, M. Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics 2018, 5, 2391–2401. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Y.; Wu, Z.; Sheng, T.; Liu, X. β-Ga2O3 solar-blind deep-ultraviolet photodetector based on annealed sapphire substrate. Vacuum 2017, 140, 106–110. [Google Scholar] [CrossRef]
- Park, T.; Hur, J. Self-Powered Low-Cost UVC Sensor Based on Organic-Inorganic Heterojunction for Partial Discharge Detection. Small 2021, 17, 2100695. [Google Scholar] [CrossRef]
- Wang, L.K.; Ju, Z.G.; Zhang, J.Y.; Zheng, J.; Shen, D.Z.; Yao, B.; Zhao, D.X.; Zhang, Z.Z.; Li, B.H.; Shan, C.X. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. Appl. Phys. Lett. 2009, 95, 131113. [Google Scholar] [CrossRef]
- Zhao, Z.; Chu, C.; Zhang, G.; Tian, K.; Zhang, Y.; Zhang, Z.-H. Tuning the Plasmonic Resonance Peak for Al Nanorods on AlGaN Layer to Deep Ultraviolet Band. IEEE Photonics J. 2021, 13, 1–7. [Google Scholar]
- Knigge, A.; Brendel, M.; Brunner, F.; Einfeldt, S.; Knauer, A.; Kueller, V.; Weyers, M. AlGaN photodetectors for the UV-C spectral region on planar and epitaxial laterally overgrown AlN/sapphire templates. Phys. Status Solidi C 2013, 10, 294–297. [Google Scholar] [CrossRef]
- Chen, X.; Ren, F.; Gu, S.; Ye, J. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res. 2019, 7, 381–415. [Google Scholar]
- Shiojiri, D.; Fukuda, D.; Yamauchi, R.; Tsuchimine, N.; Koyama, K.; Kaneko, S.; Matsuda, A.; Yoshimoto, M. Room-temperature laser annealing for solid-phase epitaxial crystallization of beta-Ga2O3 thin films. Appl. Phys. Express 2016, 9, 105502. [Google Scholar]
- Park, T.; Kim, K.; Hong, J. Effects of Drying Temperature and Molar Concentration on Structural, Optical, and Electrical Properties of β-Ga2O3 Thin Films Fabricated by Sol–Gel Method. Coatings 2021, 11, 1391. [Google Scholar]
- Pearton, S.; Yang, J.; Cary, P.H., IV; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar]
- Lin, T.-Y.; Han, S.-Y.; Huang, C.-Y.; Yang, C.-F.; Wei, S. Using Different Methods to Measure the Optical Energy Bandgap of Un-annealed and Annealed Ga2O3 Films. AFM 2021, 1, 25–30. [Google Scholar]
- Jiao, S.; Lu, H.; Wang, X.; Nie, Y.; Wang, D.; Gao, S.; Wang, J. The structural and photoelectrical properties of gallium oxide thin film grown by radio frequency magnetron sputtering. ECS J. Solid State Sci. Technol. 2019, 8, Q3086. [Google Scholar]
- Mukhopadhyay, P.; Schoenfeld, W.V. High responsivity tin gallium oxide Schottky ultraviolet photodetectors. J. Vac. Sci. 2020, 38, 013403. [Google Scholar]
- Bae, H.; Charnas, A.; Sun, X.; Noh, J.; Si, M.; Chung, W.; Qiu, G.; Lyu, X.; Alghamdi, S.; Wang, H. Solar-Blind UV Photodetector Based on Atomic Layer-Deposited Cu2O and Nanomembrane β-Ga2O3 pn Oxide Heterojunction. ACS Omega 2019, 4, 20756–20761. [Google Scholar]
- Chiou, Y.-Z.; Su, Y.-K.; Chang, S.-J.; Gong, J.; Lin, Y.-C.; Liu, S.-H.; Chang, C.-S. High detectivity InGaN-GaN multiquantum well pn junction photodiodes. IEEE J. Quantum Electron. 2003, 39, 681–685. [Google Scholar]
- Pierson, J.; Rousselot, C. Stability of reactively sputtered silver oxide films. Surf. Coat. Technol. 2005, 200, 276–279. [Google Scholar]
- Fukaya, T.; Buchel, D.; Shinbori, S.; Tominaga, J.; Atoda, N.; Tsai, D.P.; Lin, W.C. Micro-optical nonlinearity of a silver oxide layer. J. Appl. Phys. 2001, 89, 6139–6144. [Google Scholar] [CrossRef]
- Standke, B.; Jansen, M. Ag2O3, a novel binary silver oxide. Angew. Chem. Int. Ed. Engl. 1985, 24, 118–119. [Google Scholar] [CrossRef]
- Mansour, A. Evidence for an Ag4O3 phase of silver oxide. J. Phys. Chem. 1990, 94, 1006–1010. [Google Scholar]
- Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Bogana, M.; Polissi, A.; Conti, C.; Ducati, C.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Nanostructured Ag4O4 films with enhanced antibacterial activity. Nanotechnology 2008, 19, 475602. [Google Scholar]
- Barik, U.K.; Srinivasan, S.; Nagendra, C.; Subrahmanyam, A. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: Role of oxygen. Thin Solid Films 2003, 429, 129–134. [Google Scholar]
- Hammad, A.; Abdel-Wahab, M.; Alshahrie, A. Structural and morphological properties of sputtered silver oxide thin films: The effect of thin film thickness. Dig. J. Nanomater. Bio. 2016, 11, 1245–1252. [Google Scholar]
- Fakhri, M.A. Annealing effects on opto-electronic properties of Ag2O films growth using thermal evaporation techniques. Int. J. Nanoelectron. Mater. 2016, 9, 93–102. [Google Scholar]
- Yahia, K.Z. Study Optoelectronic Properties of Ag2O Heterojunction Prepered by Thermal Oxidation Technique. J. Eng. Technol. 2008, 26, 570–578. [Google Scholar]
- Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Nanostructured high valence silver oxide produced by pulsed laser deposition. Appl. Surf. Sci. 2009, 255, 5248–5251. [Google Scholar]
- Wu, Q.; Si, M.; Zhang, B.; Zhang, K.; Li, H.; Mi, L.; Jiang, Y.; Rong, Y.; Chen, J.; Fang, Y. Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O. Nanotechnology 2018, 29, 295702. [Google Scholar]
- Narayana Reddy, P.; Sreedhar, A.; Hari Prasad Reddy, M.; Uthanna, S.; Pierson, J. The effect of oxygen partial pressure on physical properties of nano-crystalline silver oxide thin films deposited by RF magnetron sputtering. Cryst. Res. Technol. 2011, 46, 961–966. [Google Scholar]
- Park, S.; Yoon, Y.; Lee, S.H.Y.; Park, T.; Kim, K.; Hong, J. Thermoinduced and Photoinduced Sustainable Hydrophilic Surface of Sputtered-TiO2 Thin Film. Coatings 2021, 11, 1360. [Google Scholar]
- Hong, J.S.; Matsushita, N.; Kim, K.H. Investigation of the effect of oxygen gas on properties of GAZO thin films fabricated by facing targets sputtering system. Semicond. Sci. Technol. 2014, 29, 075007. [Google Scholar]
- Hong, J.; Matsushita, N.; Kim, K. Effect of dopants and thermal treatment on properties of Ga-Al-ZnO thin films fabricated by hetero targets sputtering system. Thin Solid Films 2013, 531, 238–242. [Google Scholar]
- Hong, J.S.; Jang, K.W.; Park, Y.S.; Choi, H.W.; Kim, K.H. Preparation of ZnO Based Thin Films for OLED Anode by Facing Targets Sputtering System. Mol. Cryst. Liq. Cryst. 2011, 538, 103–111. [Google Scholar]
- Labed, M.; Sengouga, N.; Labed, M.; Meftah, A.; Kyoung, S.; Kim, H.; Rim, Y.S. Modeling a Ni/beta-Ga2O3 Schottky barrier diode deposited by confined magnetic-field-based sputtering. J. Phys. D Appl. Phys. 2021, 54, 115102. [Google Scholar]
- Hong, J.S.; Kim, S.M.; Kim, K.-H. Preparation of SiO2 passivation thin film for improved the organic light-emitting device life time. Jpn. J. Appl. Phys. 2011, 50, 08KE02. [Google Scholar]
- Anders, A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar]
- Raju, N.R.C.; Kumar, K.J.; Subrahmanyam, A. Physical properties of silver oxide thin films by pulsed laser deposition: Effect of oxygen pressure during growth. J. Phys. D Appl. Phys. 2009, 42, 135411. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsieh, P.-Y.; Chiang, H.-H.; Lin, C.-L.; Wu, H.-M.; Wu, C.-C. Top-emitting organic light-emitting devices using surface-modified Ag anode. Appl. Phys. Lett. 2003, 83, 5127–5129. [Google Scholar] [CrossRef]
- Mukhtar, W.M.; Shaari, S.; Menon, P.S. Propagation of surface plasmon waves at metal thin film/air interface using modified optical waveguiding assembly. Optoelectron. Adv. Mater. 2013, 7, 9–13. [Google Scholar]
- Abe, Y.; Hasegawa, T.; Kawamura, M.; Sasaki, K. Characterization of Ag oxide thin films prepared by reactive RF sputtering. Vacuum 2004, 76, 1–6. [Google Scholar] [CrossRef]
- Hong, J.; Katsumata, K.-I.; Matsushita, N. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity. J. Electron. Mater. 2016, 45, 4875–4880. [Google Scholar] [CrossRef]
- Kim, H.; Seok, H.-J.; Park, J.H.; Chung, K.-B.; Kyoung, S.; Kim, H.-K.; Rim, Y.S. Fully transparent InZnSnO/β-Ga2O3/InSnO solar-blind photodetectors with high schottky barrier height and low-defect interfaces. J. Alloys Compd. 2022, 890, 161931. [Google Scholar] [CrossRef]
- Yoon, Y.; Katsumata, K.-I.; Park, S.; Fujishima, A.; Hong, J. Enhanced Hydrogen Production at Optimum pH for the Recovery Cycle of β-FeOOH. ACS Omega 2022, 7, 16049–16054. [Google Scholar] [CrossRef]
- Zhong, W.; Li, G.; Lan, L.; Li, B.; Chen, R. Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co-sputtering. RSC Adv. 2018, 8, 34817–34822. [Google Scholar] [CrossRef]
- Waterhouse, G.I.; Bowmaker, G.A.; Metson, J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Tjeng, L.-H.; Meinders, M.B.; van Elp, J.; Ghijsen, J.; Sawatzky, G.A.; Johnson, R.L. Electronic structure of Ag2O. Phys. Rev. B 1990, 41, 3190–3199. [Google Scholar] [CrossRef]
- Reddy, P.N.; Reddy, M.; Pierson, J.; Uthanna, S. Characterization of silver oxide films formed by reactive RF sputtering at different substrate temperatures. Int. Sch. Res. Not. 2014, 2014, 684317. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.K.; Rani, A.I.; Mohamad, K.A.; Saad, I. Low Leakage Current by Solution Processed PTAA-ZnO Transparent Hybrid Hetero-Junction Device. Electron. Mater. Lett. 2020, 16, 457–465. [Google Scholar] [CrossRef]
- Alema, F.; Hertog, B.; Mukhopadhyay, P.; Zhang, Y.; Mauze, A.; Osinsky, A.; Schoenfeld, W.V.; Speck, J.S.; Vogt, T. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. APL Mater. 2019, 7, 022527. [Google Scholar] [CrossRef]
- Kalita, G.; Dzulsyahmi Shaarin, M.; Paudel, B.; Mahyavanshi, R.; Tanemura, M. Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction. Appl. Phys. Lett. 2017, 111, 013504. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Gao, X. Effects of post-annealing on Schottky contacts of Pt/ZnO films toward UV photodetector. J. Alloys Compd. 2011, 509, 7193–7197. [Google Scholar] [CrossRef]
- Kim, Y.; Ha, T.-K.; Cho, Y.-J.; Kang, Y.-S.; Yu, S.; Kim, G.; Jeong, H.; Park, J.K.; Kim, O. Severe hump phenomenon induced by increased charge trapping and suppression of electron capture effect in amorphous In-Ga-Zn-O thin-film transistors under unipolar pulsed drain bias with static positive gate bias stress. Solid-State Electron. 2020, 167, 107785. [Google Scholar] [CrossRef]
- Michaelson, H.B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef]
- Venkata Krishna Rao, R.; Ranade, A.K.; Desai, P.; Kalita, G.; Suzuki, H.; Hayashi, Y. Temperature-dependent device properties of γ-CuI and β-Ga2O3 heterojunctions. SN Appl. Sci. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Guo, D.; Li, P.; Wu, Z.; Cui, W.; Zhao, X.; Lei, M.; Li, L.; Tang, W. Inhibition of unintentional extra carriers by Mn valence change for high insulating devices. Sci. Rep. 2016, 6, 24190. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, F.; Chen, H.; Wang, Y.; Jiang, M.; Fang, X.; Zhao, D. Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire. Nano Lett. 2015, 15, 3988–3993. [Google Scholar] [CrossRef]
- Guo, D.; Su, Y.; Shi, H.; Li, P.; Zhao, N.; Ye, J.; Wang, S.; Liu, A.; Chen, Z.; Li, C. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 2018, 12, 12827–12835. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lu, Y.-J.; Lin, C.-N.; Tian, Y.-Z.; Gao, C.-J.; Dong, L.; Shan, C.-X. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C 2018, 6, 5727–5732. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; Zhang, Z.; Wang, C.; Li, B.; Zhao, H.; Zhao, D.; Shen, D. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces 2016, 8, 4185–4191. [Google Scholar] [CrossRef]
- Yu, J.; Dong, L.; Peng, B.; Yuan, L.; Huang, Y.; Zhang, L.; Zhang, Y.; Jia, R. Self-powered photodetectors based on β-Ga2O3/4H–SiC heterojunction with ultrahigh current on/off ratio and fast response. J. Alloys Compd. 2020, 821, 153532. [Google Scholar] [CrossRef]
- Chen, H.; Yu, P.; Zhang, Z.; Teng, F.; Zheng, L.; Hu, K.; Fang, X. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816. [Google Scholar] [CrossRef]
- Kan, H.; Zheng, W.; Lin, R.; Li, M.; Fu, C.; Sun, H.; Dong, M.; Xu, C.; Luo, J.; Fu, Y. Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions. ACS Appl. Mater. Inter. 2019, 11, 8412–8418. [Google Scholar] [CrossRef]
- Zhuo, R.; Wu, D.; Wang, Y.; Wu, E.; Jia, C.; Shi, Z.; Xu, T.; Tian, Y.; Li, X. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982–10986. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, L.; Wang, X.; Guo, D.; Li, W.; Li, L.; Huang, F.; Tang, W. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga: ZnO heterojunction. J. Mater. Chem. C 2017, 5, 8688–8693. [Google Scholar] [CrossRef]
Parameters | Sputtering Condition | |
---|---|---|
Layer | Ag2O | Ag |
Substrate | Soda-lime glass | Soda-lime glass |
Targets | Ag (99.99%) | Ag (99.99%) |
Base pressure | 3 × 10−5 Torr | 3 × 10−5 Torr |
Working pressure | 2 mTorr | 2 mTorr |
Gas flow | Ar: 10 sccm, O2: 3 sccm | Ar: 10 sccm |
Input power | 50 W | 50 W |
Thickness | 50 nm | 50 nm |
Photodetector | Wavelength (nm) | Responsivity (mA/W) | Detectivity (Jones) | Rise Time/Fall Time | Ref. |
---|---|---|---|---|---|
Ag2O/β-Ga2O3 | 254 | 12.87 | 2.70 × 1011 | 29.76 ms/46.73 ms | This work |
Diamond/β-Ga2O3 | 244 | 0.2 | [59] | ||
Au/β-Ga2O3 | 258 | 0.01 | 1 μs/100 μs | [60] | |
4H-SiC/β-Ga2O3 | 254 | 10.35 | 8.8 × 109 | 11 ms/19 ms | [61] |
Polyanline/MgZnO | 250 | 0.16 | 1.5 × 1011 | 0.3 s/0.3 s | [62] |
p-Gr/ZnS QDs/4H-SiC | 250 | 0.29 | 1.41 × 1010 | 28 μs/0.75 ms | [63] |
MoS2/β-Ga2O3 | 245 | 2.05 | 1.21 × 1011 | [64] | |
β-Ga2O3/Ga:ZnO | 254 | 0.76 | 0.18 s/0.27 s | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, T.; Park, S.; Park, J.H.; Min, J.Y.; Jung, Y.; Kyoung, S.; Kang, T.Y.; Kim, K.; Rim, Y.S.; Hong, J. Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/β-Ga2O3 Heterojunction. Nanomaterials 2022, 12, 2983. https://doi.org/10.3390/nano12172983
Park T, Park S, Park JH, Min JY, Jung Y, Kyoung S, Kang TY, Kim K, Rim YS, Hong J. Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/β-Ga2O3 Heterojunction. Nanomaterials. 2022; 12(17):2983. https://doi.org/10.3390/nano12172983
Chicago/Turabian StylePark, Taejun, Sangbin Park, Joon Hui Park, Ji Young Min, Yusup Jung, Sinsu Kyoung, Tai Young Kang, Kyunghwan Kim, You Seung Rim, and Jeongsoo Hong. 2022. "Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/β-Ga2O3 Heterojunction" Nanomaterials 12, no. 17: 2983. https://doi.org/10.3390/nano12172983
APA StylePark, T., Park, S., Park, J. H., Min, J. Y., Jung, Y., Kyoung, S., Kang, T. Y., Kim, K., Rim, Y. S., & Hong, J. (2022). Temperature-Dependent Self-Powered Solar-Blind Photodetector Based on Ag2O/β-Ga2O3 Heterojunction. Nanomaterials, 12(17), 2983. https://doi.org/10.3390/nano12172983