N-Doped CrS2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structures, Stabilities, and Properties of X@CrS2 Catalysts
3.2. ORR Catalytic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Topsøe, N.-Y. Mechanism of the Selective Catalytic Reduction of Nitric Oxide by Ammonia Elucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy. Science 1994, 265, 1217–1219. [Google Scholar] [CrossRef]
- Gattuso, J.-P.; Magnan, A.; Billé, R.; Cheung, W.W.L.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722. [Google Scholar] [CrossRef]
- Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G. A Highly Effective Catalyst of Sm-MnOx for the NH3-SCR of NOx at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catal. 2015, 5, 5973–5983. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Liu, H.; Logan, B.E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, Q.; Guan, J. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 2020, 409, 213214. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Wang, J.; Peng, Y.; Jung, C.-Y.; Fisher, A.; Wang, X. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Adv. Energy Mater. 2017, 7, 1700544. [Google Scholar] [CrossRef]
- Marković, N.M.; Schmidt, T.J.; Stamenković, V.; Ross, P.N. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells 2001, 1, 105–116. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.; Camargo, P.H.C.; Cho, E.C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.-M.; Lau, W.-M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 2013, 1, 10821–10828. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Kou, L.; Du, A.; Chen, C.; Frauenheim, T. Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 2014, 6, 5156–5161. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.R.; Wang, S.; Wang, W.; Xiao, H.; Obaidulla, S.M.; Gayen, A.; Khan, Y.; Chen, H.; Xu, M. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale 2019, 11, 20123–20132. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, T.; An, Y.; Dai, X.; Xia, C. VS2 nanosheet as a promising candidate of recycle and reuse NO2 gas sensor and capturer: A DFT study. J. Phys. Condens. Matter 2021, 33, 165501. [Google Scholar] [CrossRef]
- Tursun, M.; Wu, C. Electrocatalytic Reduction of N2 to NH3 Over Defective 1T′-WX2 (X=S, Se, Te) Monolayers. ChemSusChem 2022, 15, e202200191. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Z.; Zhao, J. Computational screening of single-atom catalysts supported by VS2 monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale 2022, 14, 6902–6911. [Google Scholar] [CrossRef]
- Qin, Z.; Zhao, J. 1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J. Colloid Interface Sci. 2022, 605, 155–162. [Google Scholar] [CrossRef]
- Ling, F.; Xia, W.; Li, L.; Zhou, X.; Luo, X.; Bu, Q.; Huang, J.; Liu, X.; Kang, W.; Zhou, M. Single Transition Metal Atom Bound to the Unconventional Phase of the MoS2 Monolayer for Catalytic Oxygen Reduction Reaction: A First-Principles Study. ACS Appl. Mater. Interfaces 2021, 13, 17412–17419. [Google Scholar] [CrossRef]
- Meza, E.; Diaz, R.E.; Li, C.W. Solution-Phase Activation and Functionalization of Colloidal WS2 Nanosheets with Ni Single Atoms. ACS Nano 2020, 14, 2238–2247. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Yang, L.; Cheng, D.; Cao, D. Single-Atom Ru Doping Induced Phase Transition of MoS2 and S Vacancy for Hydrogen Evolution Reaction. Small Methods 2019, 3, 1900653. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; Wang, H.; Liu, G.; Wang, G.; Zhang, H.; Zhao, H. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859–3862. [Google Scholar] [CrossRef]
- Lv, K.; Suo, W.; Shao, M.; Zhu, Y.; Wang, X.; Feng, J.; Fang, M.; Zhu, Y. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency. Nano Energy 2019, 63, 103834. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Y.; Tian, Y.; Liu, W.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202. [Google Scholar] [CrossRef]
- Singh, Y.; Back, S.; Jung, Y. Activating Transition Metal Dichalcogenides by Substitutional Nitrogen-Doping for Potential ORR Electrocatalysts. ChemElectroChem 2018, 5, 4029–4035. [Google Scholar] [CrossRef]
- Tian, S.; Tang, Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C 2021, 9, 6040–6050. [Google Scholar] [CrossRef]
- Saraf, D.; Chakraborty, S.; Kshirsagar, A.; Ahuja, R. In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 2018, 49, 283–289. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, Z.; Chen, M.; Li, Z.; Luo, X.; Guo, M.; Yang, Y.; Yu, T.; Yuan, C.; Wang, S. Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chem. Eng. J. 2022, 428, 131210. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Yan, Y.; Shi, Q.; Chang, T.; Ding, X.; Sun, J.; Yang, S.; Liu, J.Z. Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices. NPJ Comput. Mater. 2021, 7, 79. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.; Han, R.; Du, X.; Yan, Y. Tuning magnetic properties of CrS2 monolayer by doping transition metal and alkaline-earth atoms. J. Alloys Compd. 2015, 647, 75–81. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Tran, F.; Laskowski, R.; Blaha, P.; Schwarz, K. Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 2007, 75, 115131. [Google Scholar] [CrossRef]
- Ropo, M.; Kokko, K.; Vitos, L. Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems. Phys. Rev. B 2008, 77, 195445. [Google Scholar] [CrossRef]
- Haas, P.; Tran, F.; Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 2009, 79, 085104. [Google Scholar] [CrossRef]
- Haas, P.; Tran, F.; Blaha, P.; Schwarz, K.; Laskowski, R. Insight into the performance of GGA functionals for solid-state calculations. Phys. Rev. B 2009, 80, 195109. [Google Scholar] [CrossRef]
- Pedroza, L.S.; da Silva, A.J.R.; Capelle, K. Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids. Phys. Rev. B 2009, 79, 201106. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Phys. Rev. B 2006, 27, 1787. [Google Scholar] [CrossRef]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Tian, X.-H.; Zhang, J.-M. First-Principles Prediction of the Structural, Electronic, and Magnetic Properties of Nonmetal Atoms Doped Single-Layer CrS2. Phys. Status Solidi B 2019, 256, 1900149. [Google Scholar] [CrossRef]
- Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, J.; Sims, H.; Jiang, C.; Cong, C.; Brehm, J.A.; Zhang, Z.; Niu, L.; Chen, Y.; Zhou, Y.; et al. Synthesis of Co-Doped MoS2 Monolayers with Enhanced Valley Splitting. Adv. Mater. 2020, 32, 1906536. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Zhao, J.; Cai, Q.; Chen, Z. Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochim. Acta 2017, 225, 543–550. [Google Scholar] [CrossRef]
- Li, R.; Yang, L.; Xiong, T.; Wu, Y.; Cao, L.; Yuan, D.; Zhou, W. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133–139. [Google Scholar] [CrossRef]
- Xin, X.; Song, Y.; Guo, S.; Zhang, Y.; Wang, B.; Wang, Y.; Li, X. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J. Alloys Compd. 2020, 829, 154635. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, R.; Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chem. Rev. 2014, 114, 5117–5160. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Cai, Q.; Li, F. Computational screening for high-activity MoS2 monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. J. Mater. Chem. A 2017, 5, 9842–9851. [Google Scholar] [CrossRef]
- Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33, 2000086. [Google Scholar] [CrossRef]
- Tong, M.; Sun, F.; Xie, Y.; Wang, Y.; Yang, Y.; Tian, C.; Wang, L.; Fu, H. Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cu−N4 and Zn−N4 for Promoting Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2021, 60, 14005–14012. [Google Scholar] [CrossRef]
- Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T.; Hennig, R.G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cheng, D.; Cao, D.; Zeng, X.C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, T.; Goddard Iii, W.A. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt. J. Am. Chem. Soc. 2020, 142, 8625–8632. [Google Scholar] [CrossRef]
- Mitchell, C.G.; Rachel, M.A.; Derek, J.H.; Yasemin, B.; Donald, F.R.; Steven, A.P.; John, A.K. Doped Amorphous Ti Oxides To Deoptimize Oxygen Reduction Reaction Catalysis. J. Phys. Chem. C 2017, 121, 16825–16830. [Google Scholar]
- Li, F.; Ai, H.; Shen, S.; Geng, J.; Lo, K.H.; Pan, H. Two-Dimensional Dirac Nodal Line Carbon Nitride to Anchor Single-Atom Catalyst for Oxygen Reduction Reaction. ChemSusChem 2022, 15, e202102537. [Google Scholar] [CrossRef]
- Svane, K.L.; Hansen, H.A.; Vegge, T. A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction. J. Catal. 2021, 393, 230–237. [Google Scholar] [CrossRef]
- Duan, Z.; Henkelman, G. Identification of Active Sites of Pure and Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Using Constant-Potential Calculations. J. Phys. Chem. C 2020, 124, 12016–12023. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, S.; Gu, T.; Li, L.; Yu, S. The catalytic activity and mechanism of oxygen reduction reaction on P-doped MoS2. Phys. Chem. Chem. Phys. 2018, 20, 18184–18191. [Google Scholar] [CrossRef]
dX-Cr | Ef | Ebind | μB | Q | Egap | ||
---|---|---|---|---|---|---|---|
S-rich | Cr-rich | ||||||
pristine | 2.28 | / | / | / | 0.00 | / | 0.93 |
B | 1.97 | 2.06 | 0.94 | −5.62 | 1.00 | 0.09 | 0.20 |
C | 1.92 | 0.76 | −0.36 | −7.16 | 0.01 | 0.77 | 0.90 |
N | 1.87 | 0.16 | −0.96 | −5.75 | 1.00 | 0.94 | 0.25 |
O | 1.93 | −2.70 | −3.83 | −6.96 | 0.01 | 0.95 | 0.96 |
Si | 2.47 | −3.40 | −4.53 | −3.93 | 2.00 | 0.32 | 0.27 |
P | 2.35 | 0.15 | −0.97 | −4.15 | 1.00 | 0.27 | 0.95 |
Cl | 2.41 | −2.48 | −3.61 | −3.14 | 1.00 | 0.47 | 0.18 |
As | 2.49 | −0.02 | −1.14 | −3.70 | 0.96 | 0.04 | 0.00 |
Se | 2.42 | −1.17 | −2.30 | −4.76 | 0.01 | 0.28 | 0.98 |
Br | 2.56 | −0.46 | −1.58 | −2.52 | 1.00 | 0.31 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Wang, Z.; Li, X.; Cai, Q.; Li, F.; Zhao, J. N-Doped CrS2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study. Nanomaterials 2022, 12, 3012. https://doi.org/10.3390/nano12173012
Qin Z, Wang Z, Li X, Cai Q, Li F, Zhao J. N-Doped CrS2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study. Nanomaterials. 2022; 12(17):3012. https://doi.org/10.3390/nano12173012
Chicago/Turabian StyleQin, Zengming, Zhongxu Wang, Xiaofeng Li, Qinghai Cai, Fengyu Li, and Jingxiang Zhao. 2022. "N-Doped CrS2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study" Nanomaterials 12, no. 17: 3012. https://doi.org/10.3390/nano12173012
APA StyleQin, Z., Wang, Z., Li, X., Cai, Q., Li, F., & Zhao, J. (2022). N-Doped CrS2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study. Nanomaterials, 12(17), 3012. https://doi.org/10.3390/nano12173012