The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material
Abstract
:1. Introduction
2. Generation and Composition of PG
3. Classification and Existing State of Impurities in PG
3.1. Phosphorus Impurities
3.2. Fluorine Impurities
3.3. Organic Impurities
4. Removal of Impurities in the PG
4.1. The Source Removal Method of Two-Step Acidolysis
4.2. The Direct Removal Method of Post-Treatment
4.2.1. Physical Methods
4.2.2. Chemical Methods
4.2.3. Heat Treatment Methods
5. High-Value Utilization of PG Material
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Shi, H. Research status and typical process of desulfurization gypsum application technology. Min. Metall. 2006, 15, 56–60. [Google Scholar]
- Wei, X.; Hong, C. Basic performance analysis and application development of FGD gypsum. Appl. Technol. 2006, 11, 64–66. [Google Scholar]
- Cong, G.; Xing, S.; Zhang, H. Study on properties of desulfurized gypsum. New Build. Mater. 1997, 12, 10–12. [Google Scholar]
- Li, Y.; Yang, Z. Development trend of comprehensive utilization technology of phosphogypsum. Phosphate Compd. Fertil. 2018, 33, 1–6. [Google Scholar]
- Zheng, L.; Chen, H.; Wang, H.; Qi, Y.; Gao, L.; Zhang, S. Comprehensive utilization status and development suggestions of phosphogypsum in China. Phosphate Compd. Fertil. 2017, 32, 33–35. [Google Scholar]
- Ye, X. Utilization status, existing problems and suggestions of phosphogypsum in China in 2016. Phosphate Compd. Fertil. 2016, 32, 1–3. [Google Scholar]
- Li, C.; Qin, G.; Huo, J. Progress in industrial resource utilization of phosphogypsum. Sichuan Build. Mater. 2011, 2011, 1–3. [Google Scholar]
- Zhang, T.; Hu, H.; He, B.; Jie, T. Ammonium sulfate production from phosphogypsum and by-product calcium sulfate process. Chem. Miner. Prices 2017, 2, 31–34. [Google Scholar]
- Wang, X.; Zhang, Z.; Yang, S.; Yang, X.; Zhong, X.; Zhong, B.; Wei, X.; Zhang, Y. Technology and engineering progress of sulfuric acid production by phosphogypsum decomposition with sulfur. Phosphate Compd. Fertil. 2017, 32, 24–28. [Google Scholar]
- Gong, J. Phosphogypsum sulfur resource recycling production technology. Fertil. Ind. 2017, 6, 11–20, 25. [Google Scholar]
- Shen, Y.; Qian, J.; Chai, J.; Fan, Y. Calcium sulphoaluminate cements made with phosphogypsum: Production issues and material properties. Cem. Concr. Compos. 2014, 48, 67–74. [Google Scholar] [CrossRef]
- U.S. Department of the Interior. Mineral Commodity Summaries; Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- Singh, M.; Garg, M.; Verma, C.L.; Handa, S.K.; Kumar, R. An Improved Process for Purification of Phosphgysum. Constr. Build. Mater. 1996, 8, 597–601. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Xu, J. Prospect of agricultural application of phosphogypsum. China Agron. Bull. 2010, 26, 287–294. [Google Scholar]
- Wu, P. Wet Process Phosphoric Acid; Chemical Industry Press: Beijing, China, 1991. [Google Scholar]
- Ma, L.; Liu, L.; Yang, L. Resource utilization of phosphogypsum. Guizhou Chem. Ind. 2004, 2, 14–17. [Google Scholar]
- Han, Q.; Luo, K.; Li, H. Development and utilization of phosphogypsum. Chem. Technol. 2012, 20, 53–58. [Google Scholar]
- Al Hwaiti, M.S. Influence of treated waste phosphogypsum materials on the properties of ordinary portland cement. Bangladesh J. Sci. Ind. Res. 2015, 50, 241–250. [Google Scholar] [CrossRef]
- Rashad, A.M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J. Clean. Prod. 2015, 87, 717–725. [Google Scholar] [CrossRef]
- Taher, M.A. Influence of thermally treated phosphor gypsum the properties of Portland slag cement. Resour. Conserv. Recycl. 2007, 52, 28–38. [Google Scholar] [CrossRef]
- Feng, J. Phosphogypsum and its comprehensive utilization. Inorg. Salt Ind. 2001, 33, 34–36. [Google Scholar]
- Rentería-Villalobos, M.; Vioque, I.; Mavntero, J.; Manjón, G. Radiological, Chemical and morphological eharacterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW spain. J. Hazard. Materals 2010, 181, 1934203. [Google Scholar]
- Zhuo, R. Characteristics of phosphogypsum and development and application approach. Shandong Build. Mater. 2005, 26, 46–48. [Google Scholar]
- Wang, Q.; Zhang, C.; Yang, J. Characteristics of phosphogypsum and its resource utilization of building materials. Brick Tile 2008, 16, 57–59. [Google Scholar]
- Manjit, S. Role of phosphogypsum impurities on strength and microstruction of selenite plaster. Constr. Build. Mater. 2005, 19, 480–486. [Google Scholar]
- Pang, Y.; Yang, M. Analysis of phosphogypsum impurities and their effects. China Build. Mater. Dep. Technol. 2008, 17, 67–68. [Google Scholar]
- Holand, F.D.C.; Schmidt, H.; Quarcioni, V.A. Influence of Phosphorus from Phosphogypsum on the Initial Hydration of Portland Cement in the Presence of Superplasticizing. Cem. Concr. Compos. 2017, 83, 384–393. [Google Scholar] [CrossRef]
- Lieber, W. The influence of phosphates on the hydration of Portland cement. In Proceedings of the The VI International Congress on the Chemistry of Cement, Moscow, Russia, 18–22 September 1974. [Google Scholar]
- Li, M. Study on Influencing Factors of Phosphogypsum Quality and Its Resource-Based Building Materials. Ph.D. Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Holanda, F.C. Influence of Phosphorus from Phosphogypsum on the Initial Hydration of Portland Cement in the Presence of Superplasticizing Admixtures, 144f. Master’s Thesis, Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo, Sao Paulo, Brazil, 2015. [Google Scholar]
- Tabikh, A.A.; Miller, F.M. The nature of phosphogypsum impurities and their influence on cement hydration. Cem. Concr. Res. 1971, 1, 663–678. [Google Scholar] [CrossRef]
- Singh, M. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cem. Concr. Res. 2003, 33, 1363–1369. [Google Scholar] [CrossRef]
- Xu, A. Review of impurities and impurity removal methods in phosphogypsum. Chem. Technol. 2010, 18, 59–64. [Google Scholar]
- Yang, M.; Qian, J.; Wang, Z. Influence of impurities on the application properties of phosphogypsum. J. Mater. Guid. 2007, 21, 104–105. [Google Scholar]
- Zhang, Z. Decomposition of Phosphorite Powder by Hydrochloric Acid or Nitric acid Circulation Method. CN Patent CN1118331A, 1994. [Google Scholar]
- Tayibi, H.; Choura, M.; Lopez, F.A.; Alguacil, F.J.; Lopez-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Q.; Zhao, T. Modification of building gypsum and phosphogypsum. Fly. Ash. Comprehen. Utiliza. 2001, 13, 13–16. [Google Scholar]
- Ma, L.; Ning, P.; Yang, Y. Review of phosphogypsum pretreatment process. Phosphate Compd. Fertil. 2007, 22, 62–63. [Google Scholar]
- Hu, X.; Zhao, Z. Review of pretreatment process of phosphogypsum. Appl. Technol. 2006, 4, 48–51. [Google Scholar]
- Peng, J.; Zhang, J. Study on ding technique of phosphogypsum pretreatment. J. Chongqing Jianzhu Univ. 2000, 22, 74–78. [Google Scholar]
- El-Didamony, H.; Ali, M.M.; Awwad, N.S.; Fawzy, M.M.; Attallah, M.F. Treatment of phosphogypsum waste using suitable organic extractants. J. Radioanal. Nucl. Chem. 2012, 291, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Wen, M. Experimental study on desilication of phosphogypsum flotation. Non-Ferr. Metal 2000, 52, 153–158. [Google Scholar]
- Koopman, C.; Witkamp, G.J. Ion exchange extraction during continuous recrystallization of CaSO4 in the phosphoric acid production process: Lanthanide extraction efficiency and CaSO4 particle shape. Hydrometallurgy 2002, 63, 137–147. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, P.; Liu, J. Study on cycle washing process of phosphogypsum. Fertil. Ind. 2009, 36, 34–36. [Google Scholar]
- Singh, M. Treating waste phosphogypsum for cement and plaster manufactur. Chem. Concr. Res. 2002, 32, 1033–1038. [Google Scholar] [CrossRef]
- Yang, P. Comprehensive utilization of phosphogypsum. Compr. Util. China’s Resour. 2009, 27, 13–15. [Google Scholar]
- Potgieter, J.H.; Potgieter, S.S.; Mccrindle, R.I.; Strydom, C.A. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cem. Concr. Res. 2003, 33, 1223–1227. [Google Scholar] [CrossRef]
- Mun, K.J.; Hyoung, W.K.; Lee, C.W.; So, S.Y.; Soh, Y.S. Basic properties of nonsintering cement using phosphogypsum and waste lime as activator. Constr. Build. Mater. 2007, 21, 1342–1350. [Google Scholar] [CrossRef]
- Bai, Y.; Zhan, J.; Yunqin, Z. Study on treatment technology of high quality phosphogypsum. Inorg. Salt Ind. 2008, 40, 45–47. [Google Scholar]
- Al-Hwaiti, M.S. Assessment of the radiological impacts of treated phosphogypsum used as the main constituent of building materials in Jordan. Environ. Earth Sci. 2015, 74, 3159–3169. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M.; Rehsi, S.S. Purifying phosphogypsum for cement manufacture. Constr. Build. Mater. 1993, 7, 3–7. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M. Production of beneficiated phosphogypsum for cement manufacture. J. Sci. Ind. Res. 2002, 61, 533–537. [Google Scholar]
- Ölmez, H.; Erdem, E. The effect of phosphogypsum on the setting and mechanical properties of Portland cement and trass cement. Cem. Concr. Res. 1989, 19, 377–384. [Google Scholar] [CrossRef]
- Yang, M.; Pang, Y. Study on the application of chemical pretreatment phosphogypsum to cement retarder. J. Lanzhou Univ. Technol. 2007, 33, 58–60. [Google Scholar]
- Aly, M.M.; Mohammed, N.A. Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometal 1999, 52, 199–206. [Google Scholar] [CrossRef]
- Van Der Merwe, E.M.; Strydom, C.A. Purification of South African phosphogypsum for use as Portland cement retarder by a combined thermal and sulphuric acid treatment method. S. Afr. J. Sci. 2004, 100, 411–414. [Google Scholar]
- Peng, J.; Wan, T.; Tang, L. Organics, eutectic phosphorus in phosphogypsum and their effects on properties. J. Build. Mater. 2003, 6, 221–226. [Google Scholar]
- Singh, M.; Garg, M.; Rehsi, S.S. Durability of phosphogypsum based waterresistant anhydrite binder. Cem. Concr. Res. 1990, 20, 271–276. [Google Scholar] [CrossRef]
- Smadi, M.M.; Hadda, R.H.; Akour, A.M. Potential use of phosphogypsum in concrete. Cem. Concr. Res. 1999, 29, 1419–1425. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M. Making of anhydrite cement from waste gypsum. Cem. Concr. Res. 2000, 30, 571–577. [Google Scholar] [CrossRef]
- Leskeviciene, V.; Nizeviciene, D. Influence of the setting activators on the physical mechanical properties of phosphoanhydeite. Chem. Ind. Chem. Eng. 2014, 20, 233–240. [Google Scholar] [CrossRef]
- Yang, M.; Qian, J. Activation of anhydrate phosphogypsum by K2SO4 and hemihydrate gypsum. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 1103–1107. [Google Scholar] [CrossRef]
- Garg, M.; Pundir, A.; Singh, R. Modifications in water resistance and engineering properties of b-calcium sulphate hemihydrate plaster-superplasticizer blends. Mater. Struct. 2016, 49, 3253–3263. [Google Scholar] [CrossRef]
- Singh, M. Rocessing of phosphogypsum for the manufacture of plaster. Res. Ind. 1982, 27, 167–169. [Google Scholar]
- Singh, M.; Garg, M. Activation of gypsum anhydrite e slag mixtures. Cem. Concr. Res. 1995, 25, 332–338. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, Z.; Li, Y. Feasibility study on the application of microwave technology in the purification process of phosphogypsum in yunnan. In Proceedings of the Third National Academic Annual Conference on Mineral Processing, Istanbul, Turkey, 3–8 September 2006; pp. 89–101. [Google Scholar]
- Lambert, A.; Anawati, J.; Walawalkar, M.; Tam, J.; Azimi, G. Innovative Application of Microwave Treatment for Recovering of Rare Earth Elements from Phosphogypsum. ACS Sustain. Chem. Eng. 2018, 6, 16471–16481. [Google Scholar] [CrossRef]
- Reid, S.; Tam, J.; Yang, M.; Azimi, G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017, 7, 15252. [Google Scholar] [CrossRef]
- Araszkiewicz, M.; Koziol, A.; Oskwarek, A.; Lupinski, M. Microwave Drying of Porous Materials. Drying Technol. 2004, 22, 2331–2341. [Google Scholar] [CrossRef]
- Yang, X.-Q.; Huang, K.-M.; Yang, L.-J.; Jia, G.-Z. Influence of Microwave Irradiation on Calcium Sulphate Crystal Phase. Asian J. Chem. 2009, 21, 7297–7302. [Google Scholar]
- Lindroth, D.P.; Berglund, W.R. Microwave Drying of Flue Gas Desulfurized (by-Product) Gypsum. Int. J. Surf. Min. Reclam. Environ. 1995, 9, 169–177. [Google Scholar] [CrossRef]
- Papastefanou, C.; Stoulos, S.; Ioannidou, A.; Manolopoulou, M. The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. 2006, 89, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, N.; Okucu, A.; Turabi, A. Application of phosphogypsum in soil stabilization. Build. Environ. 2007, 42, 3393–3398. [Google Scholar] [CrossRef]
- Reijnders, L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials. Build. Environ. 2007, 42, 1036–1042. [Google Scholar] [CrossRef]
- Weiguo, S.; Mingkai, Z.; Qinglin, Z. Study on lime–fly ash–phosphogypsum binder. Constr. Build. Mater. 2007, 21, 1480–1485. [Google Scholar]
- Akın, A.I.; Yesim, S. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem. Concr. Res. 2004, 34, 677–680. [Google Scholar] [CrossRef]
- Kelly, A.R.; Tingzong, G.; Roger, K.S. Stabilization of phosphogypsum using class C fly ash and lime: Assessment of the potential for marine applications. J. Hazard. Mater. 2002, 93, 167–186. [Google Scholar]
- Federal Register; U.S. Government Publishing Office: Washington, DC, USA, 1990; p. 13480.
- Li, Y. Application of phosphogypsum in building materials. Build. Mater. Décor. 2017, 6, 181–182. [Google Scholar]
- Wang, Y.; Wang, P.; Tan, D.; Li, X. Phosphogypsum pretreatment and application in building materials. Build. Mater. Technol. 2016, 8, 164–166. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, T. Physical and chemical characteristics of phosphogypsum and its performance as a building material. J. Xi’an Univ. Arch. Technol. 2009, 41, 587–592. [Google Scholar]
- Schepper, M.D.; Heede, P.V.D.; Arvaniti, E.C.; Buysser, K.D.; Driessche, I.V.; Belie, N.D. Sulfates in Completely Recyclable Concrete and the Effect of CaSO4 on the Clinker Mineralogy. Constr. Build. Mater. 2017, 137, 300–306. [Google Scholar] [CrossRef]
- Qi, L.; Liu, J.; Liu, Q. Compound Effect of CaCO3 and CaSO4·2H2O on the Strength of Steel Slag-Cement Binding Materials. Mater. Res. 2016, 19, 269–275. [Google Scholar] [CrossRef]
- Irassar, E.; Violini, D.; Rahhal, V. Influence of Limestone Content, Gypsum Content and Fineness on Early Age Properties of Portland Limestone Cement Produced by Inter-grinding. Cem. Concr. Compos. 2011, 33, 192–200. [Google Scholar] [CrossRef]
- Gracia, L.; Beltran, A.; Errandonea, D.; Andres, J. CaSO4 and its Pressure Induced Phase Transitions. A Density Functional Theory Study. Inorg. Chem. 2011, 51, 1751–1759. [Google Scholar] [CrossRef]
- Xin, Y.; Xiang, L.; Yu, Y.X. Influence of Structure on the Morphology of CaSO4·nH2O (n = 0, 0.5, 2): A Molecular Simulation Study. Mater. Res. Innov. 2015, 19, 109–113. [Google Scholar] [CrossRef]
- Xin, Y.; Hou, S.; Xiang, L.; Yu, Y. Adsorption and Substitution Effects of Mg on the Growth of Calcium Sulfate Hemihydrate: An ab Initio DFT Study. Appl. Surf. Sci. 2015, 357, 1552–1557. [Google Scholar] [CrossRef]
- Fujii, T.; Ohfuji, H.; Inoue, T. Phase Relation of CaSO4 at High Pressure and Temperature up to 90 GPa and 2300 K. Phys. Chem. Miner. 2016, 43, 353–361. [Google Scholar] [CrossRef]
- Hou, S.; Wang, J.; Wang, X.; Chen, H.; Xiang, L. Effect of Mg2+ on Hydrothermal Formation of α-CaSO4·0.5H2O Whiskers with High Aspect Ratios. Langmuir 2014, 30, 9804–9810. [Google Scholar] [CrossRef]
- Han, Q.; Luo, K.; Li, H.; Xiang, L. Influence of Phosphorus on Hydrothermal Formation of Hemihydrate Calcium Sulfate Whiskers. Particuology 2015, 17, 131–135. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ma, P.; Liang, J.; Xiang, L. Influence of Hydroxylation on Fabrication of PVC/CaSO4 Composite. Appl. Surf. Sci. 2015, 357, 2320–2326. [Google Scholar] [CrossRef]
- Shuzhou, W.; Deyu, C.; Yulong, H. The Experimental Research on Preparation of Calcium Sulfate Whiskers with Hydrothermal Synthesis from Phosphogypsum Residue. Non-Metal. Mines 2016, 39, 4–7. [Google Scholar]
- Qingyu, G.; Jianxi, L.; Weiming, H. Preparation of calcium sulfate hemihydrate whisker by phosphogypsum autoclave method. J. Synth. Cryst. 2016, 45, 1892–1905. [Google Scholar]
- Huang, Z.; Dong, F.; Zhang, W. Progress in preparation of calcium sulfate whisker. Inorg. Chem. Ind. 2009, 41, 6–8. [Google Scholar]
- He, H.; Wang, J.; Ding, C. Waste brine produce calcium sulfate whisker. Appl. Chem. Ind. 2014, 43, 1671–1674. [Google Scholar]
- Zheng, S.; Yu, Q.; Xie, G. Preparating of calcium sulfate whisker using phosphogypsum by recrystallization. Hydrometall. China 2016, 35, 488–491. [Google Scholar]
- Hao, H.; Yuan, Z.; Li, L. Mechanism of faces growth in preparing calcium sulphate whiskers using sodium oleate. J. Inorg. Mater. 2016, 31, 1184–1190. [Google Scholar]
- Wang, Y.; Ma, Q.; Yuan, A. Research on preparation of calcium sulfate whiskers from calcium carbide slag and influence factors. J. Synth. Cryst. 2014, 43, 1184–1190. [Google Scholar]
- Liu, J.; Yang, H.; Shi, W. Synthesis of calcium sulfate whisker from phosphogypsum by hydrothermal method. Environ. Protect. Chem. Ind. 2014, 34, 141–144. [Google Scholar]
- Cui, Y. Study on the preparation of calcium sulfate whisker from phosphogypsum. Inorg. Salt Ind. 2010, 42, 49–50. [Google Scholar]
- Eberl, J.J.; Thelen, E.; Heller, H.L. Method for the Manufacture of Coated Calcium Sulfate Whisker Fibers. U.S. Patent No. 3,961,105, 1 January 1976. [Google Scholar]
- Aschern, W. Verfahren zur Herstellung von Prismatischem und Nadelförmigem Alpha-Calciumsulfathalbhydrat. European Patent DE2613651, 1976. [Google Scholar]
- Li, W.; Li, S.; Zhang, Z. Preparation Process of Calcium Sulfate Whisker. China Patent CN1317430C, 2004. [Google Scholar]
- Feng, X.; Liang, W.; Guan, J. Research of preparation of calcium sulfate whisker. Appl. Chem. Ind. 2007, 36, 134–136. [Google Scholar]
- Shi, P.; Liu, C.; Jiang, M. Preparation of Calcium Sulfate Whisker by Gypsum. China Patent CN101311337B, 2008. [Google Scholar]
- Yuan, Z.; Wang, X.; Han, Y. Preparation of ultrafine calcium sulfate whiskers by hydrothermal method. J. Northeast Univ. 2008, 29, 475–675. [Google Scholar]
- Xu, A.Y.; Li, H.P.; Luo, K.B.; Xiang, L. Formation of calcium sulfate whisker from CaCO3-bearing desulfurization gypsum. Res. Chem. Intermed. 2011, 37, 449–455. [Google Scholar] [CrossRef]
- Johnstone, N.E.; Gaynor, J.C.; Erickson, R.W. Tabular Acicular Gypsum and Method of Filling Paper. U.S. Patent No. 4,801,355, 31 January 1989. [Google Scholar]
- Rees, G.D.; Evans-Gowing, R.; Hammond, S.J.; Robinson, B.H. Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in oil microemulsions. Langmuir 1999, 15, 1993–2002. [Google Scholar] [CrossRef]
- Kuang, D.; Xu, A.; Fang, Y.; Ou, H.; Liu, H. Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the triton X-100/cyclohexane/water reverse micelles. J. Cryst. Growth 2002, 244, 379–383. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q. Facile synthesis and properties research of single crystal calcium sulfate nanotube through reverse micelle method. Colloid Surf. A: Physicochem. Eng. Asp. 2008, 325, 33–37. [Google Scholar] [CrossRef]
- Kaneko, H.; Yamada, M.; Negishi, A.; Kawakubo, T.; Suda, Y. Carbon Micro-Sensor Electrode and Method for Preparing It. U.S. Patent No. 5,376,251, 27 December 1994. [Google Scholar]
- Ma, P.; Chen, H.; Zhang, Q.; Wang, J.; Xiang, L. Preparation of Hierarchical CaSO4 Whisker and Its Reinforcing Effect on PVC Composites. J. Nanomater. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Lu, S.; Lan, P.; Wu, S. Preparation of Nano-CaCO3 from Phosphogypsum by Gas−Liquid−Solid Reaction for CO2 Sorption. Ind. Eng. Chem. Res. 2016, 55, 10172–10177. [Google Scholar] [CrossRef]
- Yang, B.; Chen, X.; Wang, B. Study of deposition technological conditions of one-step route for the preparation of light calcium carbonates from phosphogypsum. J. Hefei Univ. Technol. 2011, 34, 1551–1554. [Google Scholar]
- Zhu, P.; Peng, C.; Gou, P. Study on the preparation of ammonium sulfate and calcium carbonate from desilicated phosphogypsum. Chem. Miner. Process. 2017, 6, 14–17. [Google Scholar]
- Zhu, L.; Mao, D.; Fan, W. Preparation of nano calcium carbonate from phosphogypsum. Guangzhou Chem. 2016, 44, 55–57. [Google Scholar]
- Liang, Y.; Sun, H.; Peng, T. Study on the preparation influencing factor of the crystal form and morphology of CaCO3 using filtrate of ammonium salt leaching phosphogypsum. J. Synth. Cryst. 2014, 43, 2687–2693. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Xiang, L. The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials 2022, 12, 3021. https://doi.org/10.3390/nano12173021
Lv X, Xiang L. The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials. 2022; 12(17):3021. https://doi.org/10.3390/nano12173021
Chicago/Turabian StyleLv, Xinfeng, and Lan Xiang. 2022. "The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material" Nanomaterials 12, no. 17: 3021. https://doi.org/10.3390/nano12173021
APA StyleLv, X., & Xiang, L. (2022). The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials, 12(17), 3021. https://doi.org/10.3390/nano12173021