Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Graphene Synthesis
2.3. Characterization
3. Results
3.1. Raman Analysis
3.2. Raman Mapping
3.3. SEM Analysis
3.4. AFM Analysis
3.5. EDS Analysis
3.6. XPS Analysis
4. Growth Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Fazio, D.; Purdie, D.; Ott, A.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F.; et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 2019, 13, 8926–8935. [Google Scholar] [PubMed]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [PubMed]
- Pei, S.; Cheng, H. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar]
- Mishra, N.; Boeckl, J.; Motta, N.; Iacopi, F. Graphene growth on silicon carbide: A review. Phys. Status Solidi A 2016, 213, 2277–2289. [Google Scholar]
- Reza, G.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6, 53. [Google Scholar]
- Tan, H.; Wang, D.; Guo, Y. Thermal growth of graphene: A review. Coatings 2018, 8, 40. [Google Scholar]
- Antonova, I. Chemical vapor deposition growth of graphene on copper substrates: Current trends. Phys. Uspekhi 2013, 56, 1013–1020. [Google Scholar]
- Randviir, E.; Brownson, D.; Banks, C. A decade of graphene research: Production, applications and outlook. Mater. Today 2014, 17, 426–432. [Google Scholar]
- Mattevi, C.; Kima, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334. [Google Scholar]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar]
- Petrone, N.; Dean, C.; Meric, I.; van der Zande, A.; Huang, P.; Wang, L.; Muller, D.; Shepard, K.; Hone, J. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 2012, 12, 2751–2756. [Google Scholar] [PubMed]
- Lau, K.; Caulfield, J.; Gleason, K. Structure and morphology of fluorocarbon films grown by hot filament chemical vapor deposition. Chem. Mater. 2000, 12, 3032–3037. [Google Scholar]
- Limbu, T.; Hernández, J.; Mendoza, F.; Katiyar, R.; Razink, J.; Makarov, V.; Weiner, B.; Morell, G. A novel approach to the layer-number-controlled and grain-size-controlled growth of high-quality graphene for nanoelectronics. Appl. Nano Mater. 2018, 1, 1502–1512. [Google Scholar]
- Rodríguez-Villanueva, S.; Mendoza, F.; Instan, A.A.; Katiyar, R.S.; Weiner, B.R.; Morell, G. Graphene Growth Directly on SiO2/Si by Hot Filament Chemical Vapor Deposition. Nanomaterials 2022, 12, 109. [Google Scholar]
- Woehrl, N.; Ochedowski, O.; Gottlieb, S.; Shibasaki, K.; Schulz, S. Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 2014, 4, 047128. [Google Scholar]
- Wang, S.; Qiao, L.; Zhao, C.; Zhang, X.; Chen, J.; Tian, H.; Zheng, W.; Han, Z. A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition. New J. Chem. 2013, 37, 1616–1622. [Google Scholar]
- Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett. 2010, 10, 1542–1548. [Google Scholar]
- Chen, X.; Wu, B.; Liu, Y. Direct preparation of high-quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057. [Google Scholar]
- Pasternak, I.; Wesolowski, M.; Jozwik, I.; Lukosius, M.; Lupina, G.; Dabrowski, P.; Baranowski, J.M.; Strupinski, W. Silicon wafers with deposited Ge (100) layer by CVD. Sci. Rep. 2016, 6, 21773. [Google Scholar]
- Perova, T.S.; Wasyluk, J.; Kukushkin, S.A.; Osipov, A.V.; Feoktistov, N.A.; Grudinkin, S.A. Micro-raman mapping of 3c-sic thin films grown by solid–gas phase epitaxy on si (111). Nanoscale Res. Lett. 2010, 5, 1507–1511. [Google Scholar]
- Morkoc, H.; Strite, S.; Gao, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large bandgap SiC, IIIV nitride, and IIVI ZnSe based semiconductor device technologies. J. Appl. Phys. 1994, 76, 3. [Google Scholar] [CrossRef]
- Shi, Y.; Jokubavicius, V.; Höjer, P.; Ivanov, I.G.; Reza-Yazdi, G.; Yakimova, R.; Syväjärvi, M.; Sun, J. A comparative study of high-quality C-face and Si-face 3C-SiC (111) grown on off-oriented 4H-SiC substrates. J. Phys. D Appl. Phys. 2019, 52, 345103. [Google Scholar] [CrossRef]
- Daviau, K.; Lee, K. High-pressure, high-temperature behavior of silicon carbide: A review. Crystals 2018, 8, 217. [Google Scholar] [CrossRef]
- Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B.; Boeckl, J.J.; Takshi, A.; Motta, N.; Saddow, S.E.; et al. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors. Nanotechnology 2015, 26, 434005. [Google Scholar] [CrossRef] [PubMed]
- Kusunoki, M.; Norimatsu, W.; Bao, J.; Morita, K.; Starke, U. Growth and Features of Epitaxial Graphene on SiC. J. Phys. Soc. Jpn. 2015, 84, 121014. [Google Scholar] [CrossRef]
- Badami, D. X ray studies of graphite formed by decomposing silicon carbide. Carbon 1965, 3, 53–57. [Google Scholar] [CrossRef]
- Bommel, A.; Crombeen, J.; Tooren, A. LEED and Auger electron observations of the SiC (0001) surface. Surf. Sci. 1975, 48, 463–472. [Google Scholar] [CrossRef]
- Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W.A.; First, P.N.; Conrad, E.H.; Jeffrey, C.A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106. [Google Scholar] [CrossRef]
- Ni, Z.H.; Chen, W.; Fan, X.F.; Kuo, J.L.; Yu, T.; Wee, A.T.S.; Shen, Z.X. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 2008, 77, 115416. [Google Scholar] [CrossRef]
- Gupta, B.; Notarianni, M.; Mishra, N.; Shafiei, M.; Iacopi, F.; Motta, N. Evolution of epitaxial graphene layers on 3C SiC/Si (111) as a function of annealing temperature in UHV. Carbon 2014, 68, 563–572. [Google Scholar] [CrossRef]
- Rollings, E.; Gweon, G.-H.; Zhou, S.Y.; Mun, B.S.; McChesney, J.L.; Hussain, B.S.; Fedorov, A.V.; First, P.N.; de Heer, W.A.; Lanzara, A. Synthesis and characterization of atomically-thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006, 67, 2172–2177. [Google Scholar] [CrossRef]
- Suemitsu, M.; Jiao, S.; Fukidome, H.; Tateno, Y.; Makabe, I.; Nakabayashi, T. Epitaxial graphene formation on 3C-SiC/Si thin films. J. Phys. D: Appl. Phys. 2014, 47, 094016. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Shivaraman, S.; Chandrashekhar, M.V.S.; Boeckl, J.J.; Spencer, M.G. Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity. J. Electron. Mater. 2009, 38, 725–730. [Google Scholar] [CrossRef]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Röhrl, J. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Dagher, R.; Jouault, B.; Paillet, M. CVD Growth of Graphene on SiC (0001): Influence of Substrate Offcut. Mater. Sci. Forum 2017, 897, 731–734. [Google Scholar] [CrossRef]
- Tromp, R.; Hannon, J. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104. [Google Scholar] [CrossRef]
- De Heer, W.A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. PNAS 2011, 108, 16900–16905. [Google Scholar] [CrossRef]
- Dagher, R.; Blanquet, E.; Chatillon, C.; Journot, T.; Portail, M.; Nguyen, L.; Cordier, Y.; Michon, A. A comparative study of graphene growth on SiC by hydrogen-CVD or Si sublimation through thermodynamic simulations. CrystEngComm 2018, 20, 3702–3710. [Google Scholar] [CrossRef]
- Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P.E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J.; et al. Graphene Epitaxy by Chemical Vapor Deposition on SiC. Nano Lett. 2011, 11, 1786–1791. [Google Scholar] [CrossRef]
- Liu, Z.; Su, Z.; Li, Q.; Sun, L.; Zhang, X.; Yang, Z.; Liu, X.; Li, Y.; Li, Y.; Yu, F.; et al. Induced growth of quasi-free-standing graphene on SiC substrates. RSC Adv. 2019, 9, 32226. [Google Scholar] [CrossRef] [PubMed]
- Convertino, D.; Rossi, A.; Miseikis, V.; Piazza, V.; Coletti, C. Thermal decomposition and chemical vapor deposition: A comparative study of multi-layer growth of graphene on SiC(000-1). MRS Adv. 2016, 1, 3667–3672. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed]
- Tuinstra, F.; Koenig, J. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kapitanova, O.; Kononenko, O.; Koveshnikov, S.; Korepanov, V.; Roshchupkin, D. Large-scalable graphene oxide films with resistive switching for non-volatile memory applications. J. Alloys Compd. 2020, 849, 156699. [Google Scholar] [CrossRef]
- Ferrari, A.; Basko, D. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef]
- Cançado, L.; Takai, K.; Enoki, T. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Jorio, A.; Ferreira, E.; Moutinho, M.; Stavale, F.; Achete, C.; Capaz, R. Measuring disorder in graphene with the G and D bands. Phys. Status Solidi B 2010, 247, 2980–2982. [Google Scholar] [CrossRef]
- Yang, W.; He, C.; Zhang, L.; Wang, Y.; Shi, Z.; Cheng, M.; Xie, G.; Wang, D.; Yang, R.; Shi, D.; et al. Growth, Characterization, and Properties of Nanographene. Small 2012, 8, 1429–1435. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Liu, F.; Ren, Y. Synthesis of transfer-free graphene on cemented carbide surface. Sci. Rep. 2018, 8, 4759. [Google Scholar] [CrossRef]
- Wu, J.; Lin, M.; Cong, X.; Liu, H.; Tan, P. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Hawaldar, R.; Merino, P.; Correia, M.; Bdikin, I.; Grácio, J.; Méndez, J.; Martin, J.; Kumar, M. Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition. Sci. Rep. 2012, 2, 682. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, S. Measuring disorder in graphene with Raman spectroscopy. In Physics and Applications of Graphene—Experiments; InTech Publishers: London, UK, 2011; pp. 439–454. [Google Scholar]
- Robinson, J.; Weng, X.; Trumbull, K.; Cavalero, R.; Wetherington, M.; Frantz, E.; LaBella, M.; Hughes, Z.; Fanton, M.; Snyder, D. Nucleation of Epitaxial Graphene on SiC (0001). ACS Nano 2010, 4, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Rassapa, S.; Caridad, J.; Schulte, L.; Cagliani, A.; Borah, D.; Morris, M.; Bøggild, P.; Ndoni, S. High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography. RSC Adv. 2015, 5, 66711–66717. [Google Scholar] [CrossRef]
- Dhar, S.; Seitz, O.; Halls, M.D.; Choi, S.; Chabal, Y.J.; Feldman, L.C. Chemical Properties of Oxidized Silicon Carbide Surfaces upon Etching in Hydrofluoric Acid. J. Am. Chem. Soc. 2009, 131, 16808–16813. [Google Scholar] [CrossRef]
- Ferrah, D.; Penuelas, J.; Bottela, C.; Grenet, G.; Ouerghi, A. X-ray photoelectron spectroscopy (XPS) and diffraction (XPD) study of a few layers of graphene on 6H-SiC (0001). Surf. Sci. 2013, 615, 47–56. [Google Scholar] [CrossRef]
- Moreau, E.; Ferrer, J.F.; Vignaud, D.; Godey, S.; Wallart, X. Graphene growth by molecular beam epitaxy using a solid carbon source. Phys. Status Solidi A 2010, 207, 300–303. [Google Scholar] [CrossRef]
- Wang, Y.; Kusumoto, K.; Lia, C. XPS analysis of SiC films prepared by radio frequency plasma sputtering. Phys. Procedia 2012, 32, 95–102. [Google Scholar] [CrossRef]
- Rabchinskii, M.; Ryzhkov, S.; Gudkov, M.; Baidakova, M.; Saveliev, S.; Pavlov, S.; Shnitov, V.; Kirilenko, D.; Stolyarova, D.; Lebedev, A.; et al. Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties. 2D Mater. 2020, 7, 045001. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, S.; Zhao, L.; Zhang, J.; Wang, Z.; Chen, X.; Cheng, X.; Yu, F.; Zhao, X. A new direct growth method of graphene on Si-face of 6H-SiC by synergy of the inner and external carbon sources. Appl. Surface Sci. 2018, 436, 511–518. [Google Scholar] [CrossRef]
- Camara, N.; Rius, G.; Huntzinger, J.R.; Tiberj, A.; Magaud, L.; Mestres, N.; Godignon, P.; Camassel, J. Early stage formation of graphene on the C face of 6H-SiC. Appl. Phys. Lett. 2008, 93, 263102. [Google Scholar] [CrossRef]
- Luxmi; Fisher, P.J.; Srivastava, N.; Feenstra, R.M.; Sun, Y.; Kedzierski, J.; Healey, P.; Gu, G. Morphology of graphene on SiC (0001¯) surfaces. Appl. Phys. Lett. 2009, 95, 073101. [Google Scholar] [CrossRef]
- Ramachandrana, V.; Bradya, M.F.; Smith, A.R.; Feenstraa, R.M.; Greve, D.W. Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. J. Electron. Mater. 1998, 27, 308. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Khranovskyy, V.; Yakimova, R. Combining graphene with silicon carbide: Synthesis and properties—A review. Semicond. Sci. Technol. 2016, 31, 113004. [Google Scholar] [CrossRef] [Green Version]
Condition | Growth Parameters | Graphene Films Characteristics | |||
---|---|---|---|---|---|
CH4 (sccm) | H2 (sccm) | Time (min) | Temperature (°C) | ||
Cleaned with HF | 10 | 50 | 120 | 950 | Few layers |
10 | 50 | 60 | 950 | Few layers | |
1 | - | 300 | 950 | Multilayers | |
1 | - | 120 | 950 | Few layers | |
1 | - | 60 | 950 | No growth | |
Not cleaned with HF | 10 | 50 | 120 | 950 | Few layers |
10 | 50 | 60 | 950 | Few layers | |
1 | - | 300 | 950 | Few layers | |
1 | - | 120 | 950 | Few layers | |
1 | - | 60 | 950 | No growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Villanueva, S.; Mendoza, F.; Weiner, B.R.; Morell, G. Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition. Nanomaterials 2022, 12, 3033. https://doi.org/10.3390/nano12173033
Rodríguez-Villanueva S, Mendoza F, Weiner BR, Morell G. Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition. Nanomaterials. 2022; 12(17):3033. https://doi.org/10.3390/nano12173033
Chicago/Turabian StyleRodríguez-Villanueva, Sandra, Frank Mendoza, Brad R. Weiner, and Gerardo Morell. 2022. "Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition" Nanomaterials 12, no. 17: 3033. https://doi.org/10.3390/nano12173033
APA StyleRodríguez-Villanueva, S., Mendoza, F., Weiner, B. R., & Morell, G. (2022). Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition. Nanomaterials, 12(17), 3033. https://doi.org/10.3390/nano12173033