Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications
Abstract
:1. Introduction
2. Synthesis and Structural/Functional Tailoring of Aerogels
2.1. Synthesis of Aerogels
2.2. Structural Tailoring
3. Synthesis of Carbon Material-Based Aerogels
3.1. Polymer-Derived Carbon Aerogels
3.2. CNT-Based Aerogels
3.3. CNF-Based Aerogels
3.4. Graphene-Based Aerogels
3.5. Carbide-Based Aerogels
3.6. Other Carbon-Based Aerogels
4. CMBAs for Gas Adsorption
4.1. Adsorption of CO2 and CO
4.2. Adsorption of H2S and Hg Gases
4.3. Adsorption of H2
4.4. Adsortion of Volatile Organic Compound Gases
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.M.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.H.; Duan, G.G.; Jiang, S.H.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, C.A.; Sosnik, A.; Kalmar, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Control. Release 2021, 332, 40–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Du, H.S.; Zheng, T.; Liu, K.; Ji, X.X.; Xu, T.; Zhang, X.Y.; Si, C.L. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 2021, 426, 130817. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, J.M.; Usuelli, M.; Zhang, X.F.; Liu, B.; Mezzenga, R. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog. Mater. Sci. 2022, 125, 100985. [Google Scholar] [CrossRef]
- Wang, C.J.; Liang, W.D.; Yang, Y.Y.; Liu, F.; Sun, H.X.; Zhu, Z.Q.; Li, A. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage. Renew. Energy 2020, 153, 182–192. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, Z.; Bai, W.; He, J.X.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation. Adv. Energy Mater. 2019, 9, 1802158. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liang, H.W.; Hu, B.C.; Yu, S.H. Emerging Carbon-Nanofiber Aerogels: Chemosynthesis versus Biosynthesis. Angew. Chem. Int. Ed. 2018, 57, 15646–15662. [Google Scholar] [CrossRef]
- Pang, K.; Song, X.; Xu, Z.; Liu, X.T.; Liu, Y.J.; Zhong, L.; Peng, Y.X.; Wang, J.X.; Zhou, J.Z.; Meng, F.X.; et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045. [Google Scholar] [CrossRef]
- Lori, O.; Zion, N.; Honig, H.C.; Elbaz, L. 3D Metal Carbide Aerogel Network as a Stable Catalyst for the Hydrogen Evolution Reaction. ACS Catal. 2021, 11, 13707–13713. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, X.Y.; Liu, Z.S.; Zhang, H.B.; Yu, Z.Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 2020, 200, 108263. [Google Scholar] [CrossRef]
- Kong, H.; Chen, Y.; Yang, G.Z.; Liu, B.; Guo, L.; Wang, Y.; Zhou, X.; Wei, G. Two-dimensional material-based functional aerogels for treating hazards in the environment: Synthesis, functional tailoring, applications, and sustainability analysis. Nanoscale Horiz. 2022, 7, 112–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Kim, J.; Tang, J.; Na, J.; Kang, Y.M.; Kim, M.; Lim, H.; Bando, Y.; Li, J.S.; Yamauchi, Y. Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angew. Chem. Int. Ed. 2020, 59, 2066–2070. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.G.; Yu, G.Y.; Zhang, Y.K.; Zhang, M.J.; Shao, G.F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894. [Google Scholar] [CrossRef]
- Zhang, M.; He, L.; Shi, T.; Zha, R.H. Neat 3D C3N4 monolithic aerogels embedded with carbon aerogels via ring- opening polymerization with high photoreactivity. Appl. Catal. B Environ. 2020, 266, 118652. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Hu, L.; He, R.J.; Lei, H.S.; Fang, D.N. Carbon Aerogel for Insulation Applications: A Review. Int. J. Thermophys. 2019, 40, 39. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.Z.; Ma, M.T.; Hu, C.Y.; Seidi, F.; Yin, S.; Xiao, H.N. Recent advances on the bacterial cellulose-derived carbon aerogels. J. Mater. Chem. C 2021, 9, 818–828. [Google Scholar] [CrossRef]
- Gan, G.Q.; Li, X.Y.; Fan, S.Y.; Wang, L.; Qin, M.C.; Yin, Z.F.; Chen, G.H. Carbon Aerogels for Environmental Clean-Up. Eur. J. Inorg. Chem. 2019, 2019, 3126–3141. [Google Scholar] [CrossRef]
- Keshavarz, L.; Ghaani, M.R.; MacElroy, J.M.D.; English, N.J. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chem. Eng. J. 2021, 412, 128604. [Google Scholar] [CrossRef]
- Wang, F.; Dou, L.Y.; Dai, J.W.; Li, Y.Y.; Huang, L.Q.; Si, Y.; Yu, J.Y.; Ding, B. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature-Invariant Superelasticity over One Million Compressions. Angew. Chem. Int. Ed. 2020, 59, 8285–8292. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Zhong, L.B.; Dou, S.; Shao, Z.D.; Liu, Q.; Zheng, Y.M. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Int. 2019, 128, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Darpentigny, C.; Nonglaton, G.; Bras, J.; Jean, B. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Carbohyd. Polym. 2020, 229, 115560. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.W.; Feng, J.; Feng, J.Z.; Jiang, Y.G. Low-thermal-conductivity nitrogen-doped graphene aerogels for thermal insulation. RSC Adv. 2016, 6, 9396–9401. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Zhou, S.B.; Hu, P.; Zhao, G.D.; Li, Y.X.; Zhang, X.H.; Han, W.B. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci. Rep. 2017, 7, 1439. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Hassan, K.T.; Harvey, A.; Kulijer, D.; Oila, A.; Hunt, M.R.C.; Siller, L. Bioinspired Synthesis of Monolithic and Layered Aerogels. Adv. Mater. 2018, 30, 1706294. [Google Scholar] [CrossRef]
- Cao, Y.P.; Bolisetty, S.; Wolfisberg, G.; Adamcik, J.; Mezzenga, R. Amyloid fibril-directed synthesis of silica core-shell nanofilaments, gels, and aerogels. Proc. Natl. Acad. Sci. USA 2019, 116, 4012–4017. [Google Scholar] [CrossRef]
- Xu, D.W.; Yang, S.; Chen, P.; Yu, Q.; Xiong, X.H.; Wang, J. Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 2019, 146, 301–312. [Google Scholar] [CrossRef]
- Sasikumar, P.V.W.; Zera, E.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G.D. Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications. J. Am. Ceram. Soc. 2016, 99, 2977–2983. [Google Scholar] [CrossRef]
- Teo, N.; Jana, S.C. Solvent Effects on Tuning Pore Structures in Polyimide Aerogels. Langmuir 2018, 34, 8581–8590. [Google Scholar] [CrossRef]
- Lee, D.H.; Jo, M.J.; Han, S.W.; Yu, S.; Park, H. Polyimide aerogel with controlled porosity: Solvent-induced synergistic pore development during solvent exchange process. Polymer 2020, 205, 122879. [Google Scholar] [CrossRef]
- Mi, Q.Y.; Ma, S.R.; Yu, J.; He, J.S.; Zhang, J. Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled Regeneration Process. ACS Sustain. Chem. Eng. 2016, 4, 656–660. [Google Scholar] [CrossRef]
- Ban, G.; Song, S.; Lee, H.W.; Kim, H.T. Effect of Acidity Levels and Feed Rate on the Porosity of Aerogel Extracted from Rice Husk under Ambient Pressure. Nanomaterials 2019, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Dennstedt, A.; Barowski, A.; Ratke, L. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater. Design 2016, 92, 345–355. [Google Scholar] [CrossRef]
- Xu, Y.T.; Dai, Y.L.; Nguyen, T.D.; Hamad, W.Y.; MacLachlan, M.J. Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale 2018, 10, 3805–3812. [Google Scholar] [CrossRef]
- Lin, Z.Q.; Zeng, Z.P.; Gui, X.C.; Tang, Z.K.; Zou, M.C.; Cao, A.Y. Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Adv. Energy Mater. 2016, 6, 1600554. [Google Scholar] [CrossRef]
- Antonietti, M.; Fechler, N.; Fellinger, T.P. Carbon Aerogels and Monoliths: Control of Porosity and Nanoarchitecture via Sol-Gel routes. Chem. Mater. 2014, 26, 196–210. [Google Scholar] [CrossRef]
- Yao, B.; Peng, H.R.; Zhang, H.Z.; Kang, J.Z.; Zhu, C.; Delgado, G.; Byrne, D.; Faulkner, S.; Freyman, M.; Lu, X.H.; et al. Printing Porous Carbon Aerogels for Low Temperature Supercapacitors. Nano Lett. 2021, 21, 3731–3737. [Google Scholar] [CrossRef]
- Yuan, S.J.; Fan, W.; Wang, D.; Zhang, L.S.; Miao, Y.E.; Lai, F.L.; Liu, T.X. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 2021, 9, 423–432. [Google Scholar] [CrossRef]
- Yao, B.; Chandrasekaran, S.; Zhang, H.Z.; Ma, A.; Kang, J.Z.; Zhang, L.; Lu, X.H.; Qian, F.; Zhu, C.; Duoss, E.B.; et al. 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Adv. Mater. 2020, 32, 1906652. [Google Scholar] [CrossRef]
- Zhu, C.; Han, T.Y.J.; Duoss, E.B.; Golobic, A.M.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Xu, J.; Xu, H.J.; Lu, Y.H.; Yang, H.Y.; Tang, Z.W.; Lu, Z.T.; Fu, R.W.; Wu, D.C. Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Mater. 2017, 7, 8–16. [Google Scholar] [CrossRef]
- Dang, C.; Huang, Z.Y.; Chen, Y.A.; Zhou, S.H.; Feng, X.; Chen, G.X.; Dai, F.L.; Qi, H.S. Direct Dissolution of Cellulose in NaOH/Urea/alpha-Lipoic Acid Aqueous Solution to Fabricate All Biomass-Based Nitrogen, Sulfur Dual-Doped Hierarchical Porous Carbon Aerogels for Supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 21528–21538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Hu, Y.J.; Zhuo, H.; Liu, L.X.; Jing, S.S.; Zhong, L.X.; Peng, X.W.; Sun, R.C. Compressible, Elastic, and Pressure-Sensitive Carbon Aerogels Derived from 2D Titanium Carbide Nanosheets and Bacterial Cellulose for Wearable Sensors. Chem. Mater. 2019, 31, 3301–3312. [Google Scholar] [CrossRef]
- Han, S.J.; Sun, Q.F.; Zheng, H.H.; Li, J.P.; Jin, C.D. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohyd. Polym. 2016, 136, 95–100. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.L.; Qin, Y.L.; Wang, T.J.; Yang, J.; Xu, F. Compressible, Fatigue Resistant, and Pressure-Sensitive Carbon Aerogels Developed with a Facile Method for Sensors and Electrodes. ACS Sustain. Chem. Eng. 2019, 7, 12726–12733. [Google Scholar] [CrossRef]
- Chen, W.S.; Zhang, Q.; Uetani, K.; Li, Q.; Lu, P.; Cao, J.; Wang, Q.W.; Liu, Y.X.; Li, J.; Quan, Z.C.; et al. Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as High-Performance Absorption Materials. Adv. Mater. Interfaces 2016, 3, 1600004. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.H. The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. J. Colloid Interf. Sci. 2020, 569, 254–266. [Google Scholar] [CrossRef]
- Hosseini, H.; Kokabi, M.; Mousavi, S.M. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohyd. Polym. 2018, 201, 228–235. [Google Scholar] [CrossRef]
- Dong, L.B.; Yang, Q.; Xu, C.J.; Li, Y.; Yang, D.M.; Hou, F.; Yin, H.F.; Kang, F.Y. Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 2015, 90, 164–171. [Google Scholar] [CrossRef]
- Kim, J.H.; Jean, J.G.; Ovalle-Robles, R.; Kang, T.J. Aerogel sheet of carbon nanotubes decorated with palladium nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energ. 2018, 43, 6456–6461. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Islam, M.F. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes. Nanoscale 2015, 7, 12888–12894. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevis, H.; Mint, S.M.; Yedinak, E.; Tran, T.Q.; Zadhoush, A.; Youssefi, M.; Pasquali, M.; Duong, H.M. Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chem. Phys. Lett. 2018, 693, 146–151. [Google Scholar] [CrossRef]
- Mikhalchan, A.; Fan, Z.; Tran, T.Q.; Liu, P.; Tan, V.B.C.; Tay, T.E.; Duong, H.M. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 2016, 102, 409–418. [Google Scholar] [CrossRef]
- Zhou, X.X.; Wang, Y.; Gong, C.C.; Liu, B.; Wei, G. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chem. Eng. J. 2020, 402, 126189. [Google Scholar] [CrossRef]
- Yang, G.Z.; Kong, H.; Chen, Y.; Liu, B.; Zhu, D.Z.; Guo, L.; Wei, G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohyd. Polym. 2022, 279, 118947. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ding, Y.W.; Hu, B.C.; Wu, Z.Y.; Gao, H.L.; Liang, H.W.; Chen, J.F.; Yu, S.H. Temperature-Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Adv. Mater. 2020, 32, 1904331. [Google Scholar] [CrossRef]
- Ding, B.B.; Huang, S.S.; Pang, K.; Duan, Y.X.; Zhang, J.M. Nitrogen-Enriched Carbon Nanofiber Aerogels Derived from Marine Chitin for Energy Storage and Environmental Remediation. ACS Sustain. Chem. Eng. 2018, 6, 177–185. [Google Scholar] [CrossRef]
- Li, S.C.; Hu, B.C.; Ding, Y.W.; Liang, H.W.; Li, C.; Yu, Z.Y.; Wu, Z.Y.; Chen, W.S.; Yu, S.H. Wood-Derived Ultrathin Carbon Nanofiber Aerogels. Angew. Chem. Int. Ed. 2018, 57, 7085–7090. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.X.; Li, Y.; Deng, B.W.; Yin, B.; Yang, M.B. Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J. Mater. Chem. A 2020, 8, 17257–17265. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, Y.C.; Zhang, Q.; Gao, X.; Dou, X.Y.; Zhu, H.G.; Yuan, X.; Pan, L.K. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. J. Mater. Chem. A 2020, 8, 1443–1450. [Google Scholar] [CrossRef]
- Wang, J.; Ellsworth, M.W. Graphene Aerogels. ECS Trans. 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Compton, O.C.; An, Z.; Putz, K.W.; Hong, B.J.; Hauser, B.G.; Brinson, L.C.; Nguyen, S.T. Additive-free hydrogelation of graphene oxide by ultrasonication. Carbon 2012, 50, 3399–3406. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.Y.; Qian, F.; Han, T.Y.J.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D Printing of Graphene Aerogels. Small 2016, 12, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Jiang, D.G.; Liang, H.; Huo, B.B.; Liu, C.Y.; Yang, W.R.; Liu, J.Q. Superelastic and Arbitrary-Shaped Graphene Aerogels with Sacrificial Skeleton of Melamine Foam for Varied Applications. Adv. Funct. Mater. 2018, 28, 1704674. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.Q.; Yu, Y.K.; Chen, W.L.; Hu, H.; Li, H. Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson’s Ratio. Adv. Mater. 2016, 28, 9223–9230. [Google Scholar] [CrossRef]
- An, Z.M.; Zhang, R.B.; Fang, D.N. Synthesis of monolithic SiC aerogels with high mechanical strength and low thermal conductivity. Ceram. Int. 2019, 45, 11368–11374. [Google Scholar] [CrossRef]
- Chen, K.; Huang, X.W.; Zhang, Z.X.; Du, A.; Zhou, B.; Xu, Y.; Zhou, Z.J.; Wang, Y.Q. Low temperature pseudomorphic synthesis of nanocrystalline carbide aerogels for electrocatalysis. J. Mater. Chem. A 2015, 3, 11745–11749. [Google Scholar] [CrossRef]
- Kong, Y.; Zhong, Y.; Shen, X.D.; Cui, S.; Zhang, J.J.; Yang, M. Synthesis and characterization of monolithic carbon/silicon carbide composite aerogels. J. Porous Mater. 2013, 20, 845–849. [Google Scholar] [CrossRef]
- Lan, X.L.; Hou, Y.; Dong, X.Y.; Yang, Z.H.; Thai, B.Q.; Yang, Y.; Zhai, W. All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation. ACS Appl. Mater. Interfaces 2022, 14, 15360–15369. [Google Scholar] [CrossRef]
- Quan, J.; Lan, X.L.; Lim, G.J.H.; Hou, Y.; Yang, Y.; Khoo, B.C. Hierarchical SiC fiber aerogel toward microwave attenuation and thermal insulation application. J. Alloys Compd. 2022, 911, 165097. [Google Scholar] [CrossRef]
- Shen, J.; Wang, J.; Zhou, B.; Deng, Z.S.; Weng, Z.N.; Zhu, L.; Zhao, L.; Li, Y.F. Photoluminescence of fullerenes doped in silica aerogels. J. Non-Cryst. Solids 1998, 225, 315–318. [Google Scholar] [CrossRef]
- Dolai, S.; Bhunia, S.K.; Jelinek, R. Carbon-dot-aerogel sensor for aromatic volatile organic compounds. Sensor Actuat. B Chem. 2017, 241, 607–613. [Google Scholar] [CrossRef]
- Dolai, S.; Bhunia, S.K.; Zeiri, L.; Paz-Tal, O.; Jelinek, R. Thenoyltrifluoroacetone (TTA)-Carbon Dot/Aerogel Fluorescent Sensor for Lanthanide and Actinide Ions. ACS Omega 2017, 2, 9288–9295. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.; Mokaya, R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Micropor. Mesopor. Mater. 2013, 179, 151–156. [Google Scholar] [CrossRef]
- Saeed, A.M.; Rewatkar, P.M.; Far, H.M.; Taghvaee, T.; Donthula, S.; Mandal, C.; Sotiriou-Leventis, C.; Leventis, N. Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Appl. Mater. Interfaces 2017, 9, 13520–13536. [Google Scholar] [CrossRef]
- Zeng, F.Y.; Sui, Z.Y.; Liu, S.; Liang, H.P.; Zhan, H.H.; Han, B.H. Nitrogen-doped carbon aerogels with high surface area for supercapacitors and gas adsorption. Mater. Today Commun. 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Liu, Q.; Han, Y.; Qian, X.C.; He, P.P.; Fei, Z.Y.; Chen, X.; Zhang, Z.X.; Tang, J.H.; Cui, M.F.; Qiao, X. CO2 Adsorption over Carbon Aerogels: The Effect of Pore and Surface Properties. Chemistryselect 2019, 4, 3161–3168. [Google Scholar] [CrossRef]
- Geng, S.Y.; Wei, J.Y.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage. ACS Appl. Mater. Interfaces 2020, 12, 7432–7441. [Google Scholar] [CrossRef]
- Geng, S.Y.; Maennlein, A.; Yu, L.; Hedlund, J.; Oksman, K. Monolithic carbon aerogels from bioresources and their application for CO2 adsorption. Micropor. Mesopor. Mater. 2021, 323, 111236. [Google Scholar] [CrossRef]
- Hu, Y.J.; Tong, X.; Zhuo, H.; Zhong, L.X.; Peng, X.W.; Wang, S.; Sun, R.C. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 2016, 6, 15788–15795. [Google Scholar] [CrossRef]
- Alhwaige, A.A.; Ishida, H.; Qutubuddin, S. Carbon Aerogels with Excellent CO2 Adsorption Capacity Synthesized from Clay-Reinforced Biobased Chitosan-Polybenzoxazine Nanocomposites. ACS Sustain. Chem. Eng. 2016, 4, 1286–1295. [Google Scholar] [CrossRef]
- Xia, D.; Li, H.; Mannering, J.; Huang, P.; Zheng, X.R.; Kulak, A.; Baker, D.; Iruretagoyena, D.; Menzel, R. Electrically Heatable Graphene Aerogels as Nanoparticle Supports in Adsorptive Desulfurization and High-Pressure CO2 Capture. Adv. Funct. Mater. 2020, 30, 2002788. [Google Scholar] [CrossRef]
- Liu, K.K.; Jin, B.; Meng, L.Y. Glucose/Graphene-Based Aerogels for Gas Adsorption and Electric Double Layer Capacitors. Polymers 2019, 11, 40. [Google Scholar] [CrossRef]
- Qu, J.F.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Engineering 3D Ru/Graphene Aerogel Using Metal-Organic Frameworks: Capture and Highly Efficient Catalytic CO Oxidation at Room Temperature. Small 2018, 14, 1800343. [Google Scholar] [CrossRef]
- Ren, W.; Wei, Z.Z.; Xia, X.X.; Hong, Z.W.; Li, S. CO2 adsorption performance of CuBTC/graphene aerogel composites. J. Nanopart. Res. 2020, 22, 191. [Google Scholar] [CrossRef]
- Gromov, A.V.; Kulur, A.; Gibson, J.A.A.; Mangano, E.; Brandani, S.; Campbell, E.E.B. Carbon nanotube/PVA aerogels impregnated with PEI: Solid adsorbents for CO2 capture. Sustain. Energ Fuels 2018, 2, 1630–1640. [Google Scholar] [CrossRef]
- Chen, W.H.; Zhang, G.C.; Li, D.; Ma, S.G.; Wang, B.D.; Jiang, X. Preparation of Nitrogen-Doped Porous Carbon from Waste Polyurethane Foam by Hydrothermal Carbonization for H2S Adsorption. Ind. Eng. Chem. Res. 2020, 59, 7447–7456. [Google Scholar] [CrossRef]
- Kiliyankil, V.A.; Fugetsu, B.; Sakata, I.; Wang, Z.P.; Endo, M. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J. Colloid Interf. Sci. 2021, 582, 950–960. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhang, D.Y.; Wang, J.; Xu, W.J.; Yang, D.J.; Jiao, T.T.; Zhang, W.R.; Liang, P. Simultaneous removal of Hg-0 and H2S at a high space velocity by water-resistant SnO2/carbon aerogel. J. Hazard. Mater. 2019, 371, 123–129. [Google Scholar] [CrossRef]
- Tian, H.; Wu, J.; Zhang, W.B.; Yang, S.Y.; Li, F.Q.; Qi, Y.F.; Zhou, R.X.; Qi, X.M.; Zhao, L.L.; Wang, X.J. High performance of Fe nanoparticles/carbon aerogel sorbents for H2S Removal. Chem. Eng. J. 2017, 313, 1051–1060. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liu, H.W.; Wang, J.; Zhang, M.Z.; Zhang, W.R.; Chen, S.J.; Liang, P.; Zhang, H.W. Turning fulvic acid into silver loaded carbon nanosheet as a regenerable sorbent for complete Hg-0 removal in H2S containing natural gas. Chem. Eng. J. 2020, 379, 122265. [Google Scholar] [CrossRef]
- Yu, S.; Song, S.L.; Li, R.; Fang, B.Z. The lightest solid meets the lightest gas: An overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale 2020, 12, 19536–19556. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bhatnagar, A.; Dixit, V.; Shukla, V.; Shaz, M.A.; Sinha, A.S.K.; Srivastava, O.N.; Sekkar, V. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel. Int. J. Hydrogen Energ. 2016, 41, 3561–3570. [Google Scholar] [CrossRef]
- Zhong, M.L.; Fu, Z.B.; Yuan, L.; Zhao, H.B.; Zhu, J.Y.; He, Y.W.; Wang, C.Y.; Tang, Y.J. A solution-phase synthesis method to prepare Pd-doped carbon aerogels for hydrogen storage. RSC Adv. 2015, 5, 20966–20971. [Google Scholar] [CrossRef]
- Peng, D.D.; Ding, Z.M.; Zhang, L.; Fu, Y.K.; Wang, J.S.; Li, Y.; Han, S.M. Remarkable hydrogen storage properties and mechanisms of the shell-core MgH2@carbon aerogel microspheres. Int. J. Hydrogen Energ. 2018, 43, 3731–3740. [Google Scholar] [CrossRef]
- Utke, R.; Thiangviriya, S.; Javadian, P.; Jensen, T.R.; Milanese, C.; Klassen, T.; Dornheim, M. 2LiBH4-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage. Mater. Chem. Phys. 2016, 169, 136–141. [Google Scholar] [CrossRef]
- Ren, W.; Zhuang, X.D.; Liu, Z.L.; Li, S. Hydrogen adsorption performance of Cu-BTC/graphene aerogel composite: A combined experimental and computational study. Int. J. Hydrogen Energ. 2021, 46, 13097–13105. [Google Scholar] [CrossRef]
- Androulidakis, C.; Kotsidi, M.; Gorgolis, G.; Pavlou, C.; Sygellou, L.; Paterakis, G.; Koutroumanis, N.; Galiotis, C. Multi-functional 2D hybrid aerogels for gas absorption applications. Sci. Rep. 2021, 11, 13548. [Google Scholar] [CrossRef]
- Rastegar, A.; Gholami, M.; Jafari, A.J.; Hosseini-Bandegharaei, A.; Kermani, M.; Hashemi, Y.K. Use of NH4Cl for activation of carbon xerogel to prepare a novel efficacious adsorbent for benzene removal from contaminated air streams in a fixed-bed column. J. Environ. Health Sci. Eng. 2020, 18, 1141–1149. [Google Scholar] [CrossRef]
- Rastegar, A.; Farzadkia, M.; Jafari, A.J.; Esrafili, A. Preparation of Carbon-Alumina (C/Al2O3) aerogel nanocomposite for benzene adsorption from flow gas in fixed bed reactor. MethodsX 2019, 6, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Guo, F.N.; Zhang, X.; Shi, N.; Wu, Y. Optimization of preparation of monolithic carbon foam from rice husk char for benzene leakage emergency. Environ. Sci. Pollut. Res. 2018, 25, 26046–26058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Sun, Q.; Su, T.; Wang, C.L.; Yang, Y.Z. MOF-derived 3D porous carbon aerogels as an efficient adsorbent for toluene in humid air. J. Environ. Chem. Eng. 2021, 9, 106722. [Google Scholar] [CrossRef]
- Li, J.J.; Li, X.G.; Zhang, X.Y.; Zhang, J.X.; Duan, Y.S.; Li, X.B.; Jiang, D.L.; Kozawa, T.; Naito, M. Development of graphene aerogels with high strength and ultrahigh adsorption capacity for gas purification. Mater. Design 2021, 208, 109903. [Google Scholar] [CrossRef]
- Carrasco-Marin, F.; Fairen-Jimenez, D.; Moreno-Castilla, C. Carbon aerogels from gallic acid-resorcinol mixtures as adsorbents of benzene, toluene and xylenes from dry and wet air under dynamic conditions. Carbon 2009, 47, 463–469. [Google Scholar] [CrossRef]
- Fairen-Jimenez, D.; Carrasco-Marin, F.; Moreno-Castilla, C. Adsorption of benzene, toluene, and xylenes on monolithic carbon aerogels from dry air flows. Langmuir 2007, 23, 10095–10101. [Google Scholar] [CrossRef] [PubMed]
Type of CMBA | Materials | Synthesis Method | Structure/Properties | Application | Ref. |
---|---|---|---|---|---|
Polymer-carbon | PSDVB NPs | Polymerization and carbonization | Powdered CAs with high specific surface area | Energy storage | [41] |
Urea and lanthanum | Gelation and carbonization | Hole-like porous structure, hierarchical porous network | Environmental and energy science | [42] | |
MXene and BC | Freeze-drying and carbonization | Parallel and continuous flake structure | Wearable devices | [43] | |
Waste paper | Gelation and freeze-drying | Lightweight, hydrophobic and porous | Adsorbent of organics | [44] | |
TOCN and MF | Coating and pyrolysis | High N content, high compressibility, high conductivity | Sensors and electrodes | [45] | |
NFC | Gelation and freeze-drying | High porosity andelasticity, good hydrophobicity and lipophilicity | Adsorbents of oils and organic solvents | [46] | |
CNTs | CNT and PVA | Chemical linking and freeze-drying | Dandelion-like structure | Adsorbents of organic solvents | [47] |
MWCNTs and BC | Supercritical CO2 drying | Piezoresistive behavior | Strain sensor | [48] | |
CNT and CMC | Freeze-drying | Low bulk density, high strength, good processability | Devices, catalysis | [49] | |
CNT and Pd NPs | Dry-spinning and thermal evaporation | Porous structure with Pd doping | H2 sensing | [50] | |
SWCNTs and h-BN | Coating and pyrolysis | Ultra-compressivity, high porosity, excellent elasticity | Ceremic materials | [51] | |
CMPA | Polymerization and carbonization | Hierarchical nanoporous structure; hollow nanotube structure | Solar steam generation | [6] | |
Toluene | FC-CVD | Lightweight, hydrophobic, and porous | Oil adsorption | [52] | |
Methenol | FC-CVD | Highly porous and ultralight | Liquid adsorption and energy storage | [53] | |
CNFs | BC nanofibers | Freeze-drying and carbonization | Hierarchical honeycomb cellular structure | Nanodevices | [56] |
Chitin nanofibers | Freeze-drying and carbonization | Homogeneous nanofiber structure | Dye adsorption and energy storage | [57] | |
NFC | Freeze-drying and carbonization | Stacked nanosheet structure, good electrical conductivity, and high compressivity | Supercapacitors, absorbents | [58] | |
PAN and ZIF-8 | Electrospinning, freeze-drying, and carbonization | Cellular framework, low density, elastic | Adsorption of ions, electrocatalysis, energy storage | [59] | |
BC and MoC | Freeze-drying and carbonization | 3D network | Desalination | [60] | |
Graphene | GO, PVA, vitamin C, and AANi | Cooling and carbonization | Magnetic 3D GA | Microwave absorption | [27] |
GO and silica filler | 3D printing, freeze-dryging, carbonization | Cubic lattice consisting of multiple parallel cylindrical filament | supercapacitors | [63] | |
GO | 3D printing, freeze-dryging, carbonization | 3D honeycomb-like porous structure | supercapacitors | [64] | |
Melamine foram and GO | Coating and drying | Ordered porous structure | Adsorption of organic solvents | [65] | |
GO and borate | Hydrothermal synthesis, freeze-drying | Reversible compressibility, high conductivity, and low thermal conductivity | Pollution prevention and nanodevices | [66] | |
Carbides | CF/SiO2 | Thermal reduction and calcination | Porous network | Thermal insulation | [67] |
CA and TiC/NbC | Freeze-drying, high temperature reaction | Higher specific surface area and lower bulk density | electrocatalysis | [68] | |
RF/SiO2 | Thermal reduction and supercritical CO2 drying | Mesoporous | Energy devices | [69] | |
GO and SiC nanowires | Freeze-casting and carbothermal reducation | Whole X-band attenuation | Electromagnetic wave attenuation | [70] | |
Silk fibers and SiC nanowires | In-situ growth and carbothermal reduction | Highly porous, ultralight density, and good compression resistance | Microwave attenuation and thermal insulator | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Lei, Y.; He, P.; Wu, H.; Guo, L.; Wei, G. Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications. Nanomaterials 2022, 12, 3172. https://doi.org/10.3390/nano12183172
Zhang L, Lei Y, He P, Wu H, Guo L, Wei G. Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications. Nanomaterials. 2022; 12(18):3172. https://doi.org/10.3390/nano12183172
Chicago/Turabian StyleZhang, Lianming, Yu Lei, Peng He, Hao Wu, Lei Guo, and Gang Wei. 2022. "Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications" Nanomaterials 12, no. 18: 3172. https://doi.org/10.3390/nano12183172
APA StyleZhang, L., Lei, Y., He, P., Wu, H., Guo, L., & Wei, G. (2022). Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications. Nanomaterials, 12(18), 3172. https://doi.org/10.3390/nano12183172