Redox-Responsive Drug Delivery Systems: A Chemical Perspective
Abstract
:1. Introduction
2. Tumor Microenvironment and Reduction Mechanism
3. Chemical Design of Redox-Responsive Drug Delivery Systems
3.1. Disulfide Bonds
3.2. Diselenide Bonds
3.3. Succinimide-Thioether Linkages
3.4. Tetrasulfide Bonds
3.5. Platin Conjugation
4. Redox Responsive DDSs with Disulfide Bonds
4.1. Polymeric Micelles
4.2. Liposomes
4.3. Nanogels
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer. World Health Organization Cancer Today. Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=0&include_nmsc_other=1 (accessed on 1 May 2022).
- Guo, H.; Tsung, K. Tumor Reductive Therapies and Antitumor Immunity. Oncotarget 2017, 8, 55736. [Google Scholar] [CrossRef] [PubMed]
- Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866–1879. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanodrug Delivery Systems: A Promising Technology for Detection, Diagnosis, and Treatment of Cancer. AAPS PharmSciTech 2014, 15, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [PubMed]
- Sci, I.J.T.; Singh, S.; Pandey, V.K.; Prakash Tewari, R.; Agarwal, V. Nanoparticle Based Drug Delivery System: Advantages and Applications. Indian J. Sci. Technol. 2011, 4, 25–29. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, J.; Li, R.; Zhao, Y.; Hai, L.; Guo, L.; Wu, Y. Glucose and Triphenylphosphonium Co-Modified Redox-Sensitive Liposomes to Synergistically Treat Glioma with Doxorubicin and Lonidamine. ACS Appl. Mater. Interfaces 2021, 13, 26682–26693. [Google Scholar] [CrossRef]
- Liang, Y.; Kiick, K.L. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules 2016, 17, 601–614. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Javadi, M.; Pitt, W.G.; Belnap, D.M.; Tsosie, N.H.; Hartley, J.M. Encapsulating Nanoemulsions Inside ELiposomes for Ultrasonic Drug Delivery. Langmuir 2012, 28, 14720–14729. [Google Scholar] [CrossRef]
- Ong, W.; Yang, Y.; Cruciano, A.C.; McCarley, R.L. Redox-Triggered Contents Release from Liposomes. J. Am. Chem. Soc. 2008, 130, 14739–14744. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric Micelles as Drug Delivery Vehicles. RSC Adv. 2014, 4, 17028–17038. [Google Scholar] [CrossRef]
- Journal, A.I.; Singh, J.; Jain, K.; Mehra, K.; Jain, N.K.; Mehra, N.K. Dendrimers in Anticancer Drug Delivery: Mechanism of Interaction of Drug and Dendrimers. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1626–1634. [Google Scholar] [CrossRef]
- Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017, 12, 5421–5431. [Google Scholar] [CrossRef] [PubMed]
- Sharabati, A.; Biomedical, G.; Grumezescu, M.; al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials 2022, 12, 277. [Google Scholar] [CrossRef]
- Pan, J.; Rostamizadeh, K.; Filipczak, N.; Torchilin, V.P. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs’ Dosage Ratio Effect. Molecules 2019, 24, 1035. [Google Scholar] [CrossRef]
- Vijayakameswara Rao, N.; Ko, H.; Lee, J.; Park, J.H. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front. Bioeng. Biotechnol. 2018, 6, 110. [Google Scholar] [CrossRef]
- Mazzotta, E.; Tavano, L.; Muzzalupo, R. Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy. Pharmaceutics 2018, 10, 150. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, G. NIR Light-Responsive Nanocarriers for Controlled Release. J. Photochem. Photobiol. C 2021, 47, 100420. [Google Scholar] [CrossRef]
- Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N. Ultrasound-Triggered Drug Delivery for Cancer Treatment Using Drug Delivery Systems: From Theoretical Considerations to Practical Applications. J. Controll. Release 2016, 241, 144–163. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, D.; Shang, P.; Yin, D.C. A Review of Magnet Systems for Targeted Drug Delivery. J. Controll. Release 2019, 302, 90–104. [Google Scholar] [CrossRef]
- Feng, L.; Xie, R.; Wang, C.; Gai, S.; He, F.; Yang, D.; Yang, P.; Lin, J. Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation. ACS Nano 2018, 12, 11000–11012. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Li, W.; Liu, R.; Li, X.; Li, H.; Liu, L.; Chen, Y.; Lv, C.; Liu, Y. PH- and Enzyme-Triggered Drug Release as an Important Process in the Design of Anti-Tumor Drug Delivery Systems. Biomed. Pharmacother. 2019, 118, 109340. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xiong, Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front. Chem. 2021, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; He, Z. ROS-Responsive Drug Delivery Systems for Biomedical Applications. Asian J. Pharm. Sci. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Feng, L.; Liu, B.; Xie, R.; Wang, D.; Qian, C.; Zhou, W.; Liu, J.; Jana, D.; Yang, P.; Zhao, Y. An Ultrasmall SnFe2O4 Nanozyme with Endogenous Oxygen Generation and Glutathione Depletion for Synergistic Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2006216. [Google Scholar] [CrossRef]
- Kumari, R.; Sunil, D.; Ningthoujam, R.S. Hypoxia-Responsive Nanoparticle Based Drug Delivery Systems in Cancer Therapy: An up-to-Date Review. J. Controll. Release 2020, 319, 135–156. [Google Scholar] [CrossRef]
- Petrelli, A.; Borsali, R.; Fort, S.; Halila, S. Redox Tunable Delivery Systems: Sweet Block Copolymer Micelles via Thiol–(Bromo)Maleimide Conjugation. Chem. Commun. 2016, 52, 12202–12205. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; He, Y.; Xie, L.; Nie, Y.; He, B.; Zhang, Z.; Gu, Z. Development of a Reduction-Sensitive Diselenide-Conjugated Oligoethylenimine Nanoparticulate System as a Gene Carrier. Int. J. Nanomed. 2012, 7, 3991. [Google Scholar] [CrossRef]
- He, L.; Sun, M.; Cheng, X.; Xu, Y.; Lv, X.; Wang, X.; Tang, R. PH/Redox Dual-Sensitive Platinum (IV)-Based Micelles with Greatly Enhanced Antitumor Effect for Combination Chemotherapy. J. Colloid Interface Sci. 2019, 541, 30–41. [Google Scholar] [CrossRef]
- Choi, C.A.; Lee, J.E.; Mazrad, Z.A.I.; In, I.; Jeong, J.H.; Park, S.Y. Redox- and PH-Responsive Fluorescent Carbon Nanoparticles-MnO2-Based FRET System for Tumor-Targeted Drug Delivery in Vivo and in Vitro. J. Ind. Eng. Chem. 2018, 63, 208–219. [Google Scholar] [CrossRef]
- Jia, L.; Li, Z.; Zheng, D.; Li, Z.; Zhao, Z. A Targeted and Redox/PH-Responsive Chitosan Oligosaccharide Derivatives Based Nanohybrids for Overcoming Multidrug Resistance of Breast Cancer Cells. Carbohydr. Polym. 2021, 251, 117008. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.E. Advances in Redox-Responsive Drug Delivery Systems of Tumor Microenvironment. J. Nanobiotechnol. 2018, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of Glutathione, Glutathione Transferase, and Glutaredoxin in Regulation of Redox-Dependent Processes. Biochem. (Mosc.) 2015, 79, 1562–1583. [Google Scholar] [CrossRef]
- Schafer, F.Q.; Buettner, G.R. Redox Environment of the Cell as Viewed through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radic. Biol. Med. 2001, 30, 1191–1212. [Google Scholar] [CrossRef]
- Thambi, T.; Park, J.H.; Lee, D.S. Stimuli-Responsive Polymersomes for Cancer Therapy. Biomater. Sci. 2015, 4, 55–69. [Google Scholar] [CrossRef]
- Harfield, J.C.; Batchelor-Mcauley, C.; Compton, R.G. Electrochemical Determination of Glutathione: A Review. Analyst 2012, 137, 2285–2296. [Google Scholar] [CrossRef]
- Le, C.M.; Thi, H.H.P.; Cao, X.T.; Kim, G.D.; Oh, C.W.; Lim, K.T. Redox-Responsive Core Cross-Linked Micelles of Poly(Ethylene Oxide)-b-Poly(Furfuryl Methacrylate) by Diels-Alder Reaction for Doxorubicin Release. J. Polym. Sci. Part A 2016, 54, 3741–3750. [Google Scholar] [CrossRef]
- Anh, J.H.; Jeong, G.W.; Nah, J.W. Anticancer Effect of Intracellular-Delivered Doxorubicin Using a Redox-Responsive LMWSC-g-Lipoic Acid Micelles. Macromol. Res. 2018, 26, 650–658. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Mohammadi, F.; Soltani, A.; Ghahremanloo, A.; Javid, H.; Hashemy, S.I. The Thioredoxin System and Cancer Therapy: A Review. Cancer Chemother. Pharmacol. 2019, 84, 925–935. [Google Scholar] [CrossRef]
- Phan, U.T.; Arunachalam, B.; Cresswell, P. Gamma-Interferon-InducibleLysosomal Thiol Reductase (GILT): Maturation, Activity, and Mechanism of Action. J. Biol. Chem. 2000, 275, 25907–25914. [Google Scholar] [CrossRef] [PubMed]
- Gisbert-Garzarán, M.; Vallet-Regí, M. Redox-Responsive Mesoporous Silica Nanoparticles for Cancer Treatment: Recent Updates. Nanomaterials 2021, 11, 2222. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Dong, L.; Zhang, P.; Mu, Y.; Cui, X.; Zhou, J.; Huo, M.; Yin, T. Hyaluronic Acid-Decorated Redox-Sensitive Chitosan Micelles for Tumor-Specific Intracellular Delivery of Gambogic Acid. Int. J. Nanomed. 2019, 14, 4649–4666. [Google Scholar] [CrossRef]
- Behroozi, F.; Abdkhodaie, M.J.; Abandansari, H.S.; Satarian, L.; Molazem, M.; Al-Jamal, K.T.; Baharvand, H. Engineering Folate-Targeting Diselenide-Containing Triblock Copolymer as a Redox-Responsive Shell-Sheddable Micelle for Antitumor Therapy in Vivo. Acta Biomater. 2018, 76, 239–256. [Google Scholar] [CrossRef]
- Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc. 2010, 132, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.D.; Kiick, K.L. Tunable Degradation of Maleimide-Thiol Adducts in Reducing Environments. Bioconjugate Chem. 2011, 22, 1946–1953. [Google Scholar] [CrossRef]
- Wu, H.; Levalley, P.J.; Luo, T.; Kloxin, A.M.; Kiick, K.L. Manipulation of Glutathione-Mediated Degradation of Thiol-Maleimide Conjugates. Bioconjugate Chem. 2018, 29, 3595–3605. [Google Scholar] [CrossRef]
- Baldwin, A.D.; Kiick, K.L. Reversible Maleimide—Thiol Adducts Yield Glutathione-Sensitive Poly(Ethylene Glycol)—Heparin Hydrogels. Polym. Chem. 2012, 4, 133–143. [Google Scholar] [CrossRef]
- Kharkar, P.M.; Kloxin, A.M.; Kiick, K.L. Dually Degradable Click Hydrogels for Controlled Degradation and Protein Release. J. Mater. Chem. B 2014, 2, 5511–5521. [Google Scholar] [CrossRef]
- Kharkar, P.M.; Kiick, K.L.; Kloxin, A.M. Design of Thiol- and Light-Sensitive Degradable Hydrogels Using Michael-Type Addition Reactions. Polym. Chem. 2015, 6, 5565–5574. [Google Scholar] [CrossRef] [Green Version]
- Kharkar, P.M.; Scott, R.A.; Olney, L.P.; LeValley, P.J.; Maverakis, E.; Kiick, K.L.; Kloxin, A.M. Controlling the Release of Small, Bioactive Proteins via Dual Mechanisms with Therapeutic Potential. Adv. Healthc. Mater. 2017, 6, 1700713. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, X.; Wang, H.; Lu, H.; Di, D.; Zhao, Q.; Wang, S. Evaluation on Redox-Triggered Degradation of Thioether-Bridged Hybrid Mesoporous Organosilica Nanoparticles. Colloids Surfaces A 2021, 608, 125566. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, D.; Luo, J.; Zhang, M.; Yang, Y. Surfactant-Free Synthesis of Monodispersed Organosilica Particles with Pure Sulfide-Bridged Silsesquioxane Framework Chemistry via Extension of Stöber Method. J. Colloid Interface Sci. 2021, 591, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Peng, T.; Wang, X.; Li, B.; Wang, Y.; Song, D.; Xu, T.; Liu, X. Glutathione-Sensitive Mesoporous Organosilica-Coated Gold Nanorods as Drug Delivery System for Photothermal Therapy-Enhanced Precise Chemotherapy. Front. Chem. 2022, 10, 842682. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Feng, L.; Bian, Y.; Yuan, M.; Zhu, Y.; Yang, P.; Cheng, Z.; Lin, J. Mn2+/Fe3+/Co2+ and Tetrasulfide Bond Co-Incorporated Dendritic Mesoporous Organosilica as Multifunctional Nanocarriers: One-Step Synthesis and Applications for Cancer Therapy. Adv. Healthc. Mater. 2022, 11, 2200665. [Google Scholar] [CrossRef]
- Wang, K.; Liu, N.; Zhang, P.; Guo, Y.; Zhang, Y.; Zhao, Z.; Luan, Y.; Li, S.; Cai, J.; Cao, J. Synthetic Methods of Disulfide Bonds Applied in Drug Delivery Systems. Curr. Org. Chem. 2015, 20, 1477–1489. [Google Scholar] [CrossRef]
- Du, Y.; Ling, L.; Ismail, M.; He, W.; Xia, Q.; Zhou, W.; Yao, C.; Li, X. Redox Sensitive Lipid-Camptothecin Conjugate Encapsulated Solid Lipid Nanoparticles for Oral Delivery. Int. J. Pharm. 2018, 549, 352–362. [Google Scholar] [CrossRef]
- Duan, X.; Bai, T.; Du, J.; Kong, J. One-Pot Synthesis of Glutathione-Responsive Amphiphilic Drug Self-Delivery Micelles of Doxorubicin–Disulfide–Methoxy Polyethylene Glycol for Tumor Therapy. J. Mater. Chem. B 2017, 6, 39–43. [Google Scholar] [CrossRef]
- Luo, Y.; Yin, X.; Yin, X.; Chen, A.; Zhao, L.; Zhang, G.; Liao, W.; Huang, X.; Li, J.; Zhang, C.Y. Dual PH/Redox-Responsive Mixed Polymeric Micelles for Anticancer Drug Delivery and Controlled Release. Pharmaceutics 2019, 11, 176. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Zhang, Y.; Zhang, K.; Xie, J.; Liu, Y.; Li, W.; Feng, N. Curcumin-Loaded Redox-Responsive Mesoporous Silica Nanoparticles for Targeted Breast Cancer Therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Lee, H.; In, I.; Park, S.Y. PH/Redox/Photo Responsive Polymeric Micelle via Boronate Ester and Disulfide Bonds with Spiropyran-Based Photochromic Polymer for Cell Imaging and Anticancer Drug Delivery. Eur. Polym. J. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Sauraj; Vinay, K.; Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Kumar, A.; Agrawal, G.; Gopinath, P.; Negi, Y.S. Redox Responsive Xylan-SS-Curcumin Prodrug Nanoparticles for Dual Drug Delivery in Cancer Therapy. Mater. Sci. Eng. C 2020, 107, 110356. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Huang, X.; Melle, A.; Karperien, M.; Pich, A. Redox-Responsive Degradable Prodrug Nanogels for Intracellular Drug Delivery by Crosslinking of Amine-Functionalized Poly(N-Vinylpyrrolidone) Copolymers. J. Colloid Interface Sci. 2019, 540, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Yang, C.; Wang, W.; Chu, L.; Huang, F.; Liu, Q.; Deng, L.; Kong, D.; Liu, J.; et al. Folic Acid-Targeted Disulfide-Based Cross-Linking Micelle for Enhanced Drug Encapsulation Stability and Site-Specific Drug Delivery against Tumors. Int. J. Nanomed. 2016, 11, 1119. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Lin, L.; Chen, D.; Stenzel, M.H. Degradable Disulfide Core-Cross-Linked Micelles as a Drug Delivery System Prepared from Vinyl Functionalized Nucleosides via the RAFT Process. Biomacromolecules 2008, 9, 3321–3331. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ling, L.; Xia, Q.; Li, X. A Reduction-Responsive Drug Delivery with Improved Stability: Disulfide Crosslinked Micelles of Small Amiphiphilic Molecules. RSC Adv. 2021, 11, 12757–12770. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Z.; Shi, F.; Xiao, C.; Ding, J.; Zhuang, X.; He, C.; Chen, L.; Chen, X. Redox-Sensitive Shell-Crosslinked Polypeptide-Block-Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromol. Biosci. 2013, 13, 1249–1258. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Song, M.; Tian, B.; Li, K.; Liang, Y.; Han, J.; Wu, Z. A Shell-Crosslinked Polymeric Micelle System for PH/Redox Dual Stimuli-Triggered DOX on-Demand Release and Enhanced Antitumor Activity. Colloids Surfaces B 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Cao, W.; Yi, Y.; Xu, H. Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids. Langmuir 2014, 30, 5628–5636. [Google Scholar] [CrossRef]
- Lee, E.; Park, H.C.; Lee, D.; Park, S.J.; Kim, Y.H.; Kim, C.H. Synthesis and Cellular Affinity of a Water-Soluble Sulfated Diselenide Compound as a H2O2-Responsive Ionic Cross-Linker. J. Ind. Eng. Chem. 2020, 83, 181–188. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, X.; Li, M.; Wang, C.; Xu, J.; Ma, D.; Xue, W. Redox Poly(Ethylene Glycol)-b-Poly(l-Lactide) Micelles Containing Diselenide Bonds for Effective Drug Delivery. J. Mater. Sci. Mater. Electron. 2015, 26, 234. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Zhang, Y.; Xu, H.; Xu, Y.; Xu, Y.; Lang, M. Well-Defined Labile Diselenide-Centered Poly(ε-Caprolactone)-Based Micelles for Activated Intracellular Drug Release. J. Mater. Chem. B 2016, 4, 5059–5067. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y.; Song, Z.; Xia, Y.; Xu, H.; Lang, M. Enhanced Bioreduction-Responsive Biodegradable Diselenide-Containing Poly(Ester Urethane) Nanocarriers. Biomater. Sci. 2017, 5, 669–677. [Google Scholar] [CrossRef]
- Hailemeskel, B.Z.; Hsu, W.H.; Addisu, K.D.; Andrgie, A.T.; Chou, H.Y.; Lai, J.Y.; Tsai, H.C. Diselenide Linkage Containing Triblock Copolymer Nanoparticles Based on Bi (Methoxyl Poly(Ethylene Glycol))-Poly(ε-Carprolactone): Selective Intracellular Drug Delivery in Cancer Cells. Mater. Sci. Eng. C 2019, 103, 109803. [Google Scholar] [CrossRef] [PubMed]
- Gebrie, H.T.; Addisu, K.D.; Darge, H.F.; Mekonnen, T.W.; Kottackal, D.T.; Tsai, H.C. Development of Thermo/Redox-Responsive Diselenide Linked Methoxy Poly(Ethylene Glycol)-Block-Poly(ε-Caprolactone-Co-p-Dioxanone) Hydrogel for Localized Control Drug Release. J. Polym. Res. 2021, 28, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Wei, C.; Zhang, Y.; Yang, L.; Song, Z.; Lang, M. Diselenide-Containing Poly(ε-Caprolactone)-Based Thermo-Responsive Hydrogels with Oxidation and Reduction-Triggered Degradation. Mater. Today Chem. 2017, 4, 172–179. [Google Scholar] [CrossRef]
- Zhai, S.; Hu, X.; Hu, Y.; Wu, B.; Xing, D. Visible Light-Induced Crosslinking and Physiological Stabilization of Diselenide-Rich Nanoparticles for Redox-Responsive Drug Release and Combination Chemotherapy. Biomaterials 2017, 121, 41–54. [Google Scholar] [CrossRef]
- Gong, C.; Shan, M.; Li, B.; Wu, G. Injectable Dual Redox Responsive Diselenide-Containing Poly(Ethylene Glycol) Hydrogel. J. Biomed. Mater. Res. Part A 2017, 105, 2451–2460. [Google Scholar] [CrossRef]
- Tian, Y.; Lei, M.; Yan, L.; An, F. Diselenide-Crosslinked Zwitterionic Nanogels with Dual Redox-Labile Properties for Controlled Drug Release. Polym. Chem. 2020, 11, 2360–2369. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Lu, D.-Q.; Chen, L.; Yang, R.; Liu, D.; Zhang, B. Diselenide-Crosslinked Carboxymethyl Chitosan Nanoparticles for Doxorubicin Delivery: Preparation and in Vivo Evaluation. Carbohydr. Polym. 2022, 292, 119699. [Google Scholar] [CrossRef]
- Yan, H.; Dong, J.; Huang, X.; Du, X. Protein-Gated Upconversion Nanoparticle-Embedded Mesoporous Silica Nanovehicles via Diselenide Linkages for Drug Release Tracking in Real Time and Tumor Chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 29070–29082. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; Chen, Y.; Qu, F. Gated Magnetic Mesoporous Silica Nanoparticles for Intracellular Enzyme-Triggered Drug Delivery. Mater. Sci. Eng. C 2016, 69, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Dong, C.M. Triple Redox/Temperature Responsive Diselenide-Containing Homopolypeptide Micelles and Supramolecular Hydrogels Thereof. J. Polym. Sci. Part A 2018, 56, 1067–1077. [Google Scholar] [CrossRef]
- He, Q.; Chen, J.; Yan, J.; Cai, S.; Xiong, H.; Liu, Y.; Peng, D.; Mo, M.; Liu, Z. Tumor Microenvironment Responsive Drug Delivery Systems. Asian J. Pharm. Sci. 2020, 15, 416–448. [Google Scholar] [CrossRef]
- Cerda, M.M.; Hammers, M.D.; Earp, M.S.; Zakharov, L.N.; Pluth, M.D. Applications of Synthetic Organic Tetrasulfides as H2S Donors. Org. Lett. 2017, 19, 2314–2317. [Google Scholar] [CrossRef]
- Mollazadeh, S.; Mackiewicz, M.; Yazdimamaghani, M. Recent Advances in the Redox-Responsive Drug Delivery Nanoplatforms: A Chemical Structure and Physical Property Perspective. Mater. Sci. Eng. C 2021, 118, 111536. [Google Scholar] [CrossRef]
- Tylkowski, B.; Jastrząb, R.; Odani, A. Developments in Platinum Anticancer Drugs. Phys. Sci. Rev. 2018, 3, 20160007. [Google Scholar] [CrossRef]
- Ling, X.; Tu, J.; Wang, J.; Shajii, A.; Kong, N.; Feng, C.; Zhang, Y.; Yu, M.; Xie, T.; Bharwani, Z.; et al. Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS Nano 2019, 13, 357–370. [Google Scholar] [CrossRef]
- Wang, R.; He, D.; Wang, H.; Wang, J.; Yu, Y.; Chen, Q.; Sun, C.; Shen, Y.; Tu, J.; Xiong, Y. Redox-Sensitive Polyglutamic Acid-Platinum(IV) Prodrug Grafted Nanoconjugates for Efficient Delivery of Cisplatin into Breast Tumor. Nanomed. Nanotechnol. Biol. Med. 2020, 29, 102252. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Z.; Wang, T.; He, W.; Zhou, W.; Li, M.; Yao, C.; Li, X. Improved Antitumor Activity of Novel Redox-Responsive Paclitaxel-Encapsulated Liposomes Based on Disulfide Phosphatidylcholine. Mol. Pharm. 2020, 17, 262–273. [Google Scholar] [CrossRef]
- Wang, T.; He, W.; Du, Y.; Wang, J.; Li, X. Redox-Sensitive Irinotecan Liposomes with Active Ultra-High Loading and Enhanced Intracellular Drug Release. Colloids Surfaces B 2021, 206, 111967. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Du, Y.; Zhou, W.; Yao, C.; Li, X. Redox-Sensitive Dimeric Camptothecin Phosphatidylcholines-Based Liposomes for Improved Anticancer Efficacy. Nanomedicine 2019, 14, 3057–3074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ling, L.; Du, Y.; Yao, C.; Li, X. Reduction Responsive Liposomes Based on Paclitaxel-Ss-Lysophospholipid with High Drug Loading for Intracellular Delivery. Int. J. Pharm. 2019, 564, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Feng, S.; Chi, Y.; Liu, J.; Sun, K.; Guo, C.; Wu, Z. Estrogen-Functionalized Liposomes Grafted with Glutathione-Responsive Sheddable Chotooligosaccharides for the Therapy of Osteosarcoma. Drug Deliv. 2018, 25, 900–908. [Google Scholar] [CrossRef]
- Chi, Y.; Yin, X.; Sun, K.; Feng, S.; Liu, J.; Chen, D.; Guo, C.; Wu, Z. Redox-Sensitive and Hyaluronic Acid Functionalized Liposomes for Cytoplasmic Drug Delivery to Osteosarcoma in Animal Models. J. Controll. Release 2017, 261, 113–125. [Google Scholar] [CrossRef]
- Liu, D.; Chen, B.; Mo, Y.; Wang, Z.; Qi, T.; Zhang, Q.; Wang, Y. Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Nano Lett. 2019, 19, 6964–6976. [Google Scholar] [CrossRef]
- Elkassih, S.A.; Kos, P.; Xiong, H.; Siegwart, D.J. Degradable Redox-Responsive Disulfide-Based Nanogel Drug Carriers via Dithiol Oxidation Polymerization. Biomater. Sci. 2019, 7, 607. [Google Scholar] [CrossRef]
- Tian, Y.; Bian, S.; Yang, W. A Redox-Labile Poly(Oligo(Ethylene Glycol)Methacrylate)-Based Nanogel with Tunable Thermosensitivity for Drug Delivery. Polym. Chem. 2016, 7, 1913–1921. [Google Scholar] [CrossRef]
- Chen, S.; Bian, Q.; Wang, P.; Zheng, X.; Lv, L.; Dang, Z.; Wang, G. Photo, PH and Redox Multi-Responsive Nanogels for Drug Delivery and Fluorescence Cell Imaging. Polym. Chem. 2017, 8, 6150–6157. [Google Scholar] [CrossRef]
- Li, X.; Yuan, S.; Shea, K.J.; Qiu, G.; Lu, X.; Zhang, R. Redox/Temperature Responsive Nonionic Nanogel and Photonic Crystal Hydrogel: Comparison between N, N′-Bis(Acryloyl)Cystamine and N, N′-Methylenebisacrylamide. Polymer 2018, 137, 112–121. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Wen, Q.; Ni, C. Preparation of Xanthan Gum Nanogels and Their PH/Redox Responsiveness in Controlled Release. J. Appl. Polym. Sci. 2019, 136, 47921. [Google Scholar] [CrossRef]
- Xing, T.; Lai, B.; Ye, X.; Yan, L. Disulfide Core Cross-Linked PEGylated Polypeptide Nanogel Prepared by a One-Step Ring Opening Copolymerization of N-Carboxyanhydrides for Drug Delivery. Macromol. Biosci. 2011, 11, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Wang, G.; Kumar, J.N.; Liu, Y. Surfactant-Free Emulsion-Based Preparation of Redox-Responsive Nanogels. Macromol. Rapid Commun. 2015, 36, 2102–2106. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Panja, S.; Banerjee, S.L.; Ghorai, S.K.; Maji, S.; Maiti, T.K.; Chattopadhyay, S. Magnetic Particle Anchored Reduction and PH Responsive Nanogel for Enhanced Intracellular Drug Delivery. Eur. Polym. J. 2020, 129, 109638. [Google Scholar] [CrossRef]
- Cao, X.T.; Vu-Quang, H.; Doan, V.D.; Nguyen, V.C. One-Step Approach of Dual-Responsive Prodrug Nanogels via Diels-Alder Reaction for Drug Delivery. Colloid Polym. Sci. 2021, 299, 675–683. [Google Scholar] [CrossRef]
- Senthilkumar, T.; Lv, F.; Zhao, H.; Liu, L.; Wang, S. Conjugated Polymer Nanogel Binding Anticancer Drug through Hydrogen Bonds for Sustainable Drug Delivery. ACS Appl. Bio Mater. 2019, 2, 6012–6020. [Google Scholar] [CrossRef]
- Li, B.; Xu, Q.; Li, X.; Zhang, P.; Zhao, X.; Wang, Y. Redox-Responsive Hyaluronic Acid Nanogels for Hyperthermia- Assisted Chemotherapy to Overcome Multidrug Resistance. Carbohydr. Polym. 2019, 203, 378–385. [Google Scholar] [CrossRef]
- Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH Dual-Stimuli Responsive Camptothecin Prodrug Nanogels for “on-Demand” Drug Delivery. J. Controll. Release 2019, 296, 93–106. [Google Scholar] [CrossRef]
- Zhuang, W.; Yang, L.; Li, G.; Wang, Y. Redox and Ph Dual-Responsive Polymeric Micelle with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 18489–18498. [Google Scholar] [CrossRef]
- Wen, H.Y.; Dong, H.Q.; Xie, W.J.; Li, Y.Y.; Wang, K.; Pauletti, G.M.; Shi, D.L. Rapidly Disassembling Nanomicelles with Disulfide-Linked PEG Shells for Glutathione-Mediated Intracellular Drug Delivery. Chem. Commun. 2011, 47, 3550–3552. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, Y.; Sun, T.M.; Xiong, M.H.; Wu, J.; Yang, Y.Y.; Wang, J. Core–Shell–Corona Micelle Stabilized by Reversible Cross-Linkage for Intracellular Drug Delivery. Macromol. Rapid Commun. 2010, 31, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Gao, Y.; Wang, Z.; Gong, C.; Hu, C.; Ding, X.; Qiang, L.; Gao, S.; Ren, F. Codelivery of MiR-4638-5p and Docetaxel Based on Redox-Sensitive Polypeptide Micelles as an Improved Strategy for the Treatment of Castration-Resistant Prostate Cancer. Mol. Pharm. 2019, 16, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wang, Q.Y.; Chen, K.L.; Luo, J.B.; Zhou, Q.H.; Lin, J. Reduction/Temperature/PH Multi-Stimuli Responsive Core Cross-Linked Polypeptide Hybrid Micelles for Triggered and Intracellular Drug Release. Colloids Surfaces B 2018, 170, 373–381. [Google Scholar] [CrossRef]
- Ding, J.; Chen, J.; Li, D.; Xiao, C.; Zhang, J.; He, C.; Zhuang, X.; Chen, X. Biocompatible Reduction-Responsive Polypeptide Micelles as Nanocarriers for Enhanced Chemotherapy Efficacy in Vitro. J. Mater. Chem. B 2012, 1, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, W.; Zhou, W.; Li, X. Disulfide Phosphatidylcholines: Alternative Phospholipids for the Preparation of Functional Liposomes. Chem. Commun. 2019, 55, 8434–8437. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.; Li, T.; Ruan, Z.; Yan, L. PHe- and Glutathione-Stepwise-Responsive Polypeptide Nanogel for Smart and Efficient Drug Delivery. J. Mater. Sci. 2018, 53, 14933–14943. [Google Scholar] [CrossRef]
- Guo, H.; Li, F.; Qiu, H.; Xu, W.; Li, P.; Hou, Y.; Ding, J.; Chen, X. Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. Research 2020, 2020, 8970135. [Google Scholar] [CrossRef]
- He, L.; Li, D.; Wang, Z.; Xu, W.; Wang, J.; Guo, H.; Wang, C.; Ding, J. L-Cystine-Crosslinked Polypeptide Nanogel as a Reduction-Responsive Excipient for Prostate Cancer Chemotherapy. Polymers 2016, 8, 36. [Google Scholar] [CrossRef]
- Yang, C.; Li, C.; Zhang, P.; Wu, W.; Jiang, X. Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-Expressive Cancer, Both Primary and Metastatic Tumors. Theranostics 2017, 7, 1719. [Google Scholar] [CrossRef]
- Maciel, D.; Figueira, P.; Xiao, S.; Hu, D.; Shi, X.; Rodrigues, J.; Tomás, H.; Li, Y. Redox-Responsive Alginate Nanogels with Enhanced Anticancer Cytotoxicity. Biomacromolecules 2013, 14, 3140–3146. [Google Scholar] [CrossRef]
- Liu, J.; Detrembleur, C.; Hurtgen, M.; Debuigne, A.; de Pauw-Gillet, M.C.; Mornet, S.; Duguet, E.; Jérôme, C. Reversibly Crosslinked Thermo- and Redox-Responsive Nanogels for Controlled Drug Release. Polym. Chem. 2014, 5, 77–88. [Google Scholar] [CrossRef]
- Patil, S.S.; Shinde, V.S.; Misra, R.D.K. PH and Reduction Dual-Stimuli-Responsive PEGDA/PAMAM Injectable Network Hydrogels via Aza-Michael Addition for Anticancer Drug Delivery. J. Polym. Sci. Part A 2018, 56, 2080–2095. [Google Scholar] [CrossRef]
- Lin, C.; He, H.; Zhang, Y.; Xu, M.; Tian, F.; Li, L.; Wang, Y. Acetaldehyde-Modified-Cystine Functionalized Zr-MOFs for PH/GSH Dual-Responsive Drug Delivery and Selective Visualization of GSH in Living Cells. RSC Adv. 2020, 10, 3084–3091. [Google Scholar] [CrossRef] [PubMed]
- Men, W.; Zhu, P.; Dong, S.; Liu, W.; Zhou, K.; Bai, Y.; Liu, X.; Gong, S.; Zhang, C.Y.; Zhang, S. Fabrication Of Dual PH/Redox-Responsive Lipid-Polymer Hybrid Nanoparticles For Anticancer Drug Delivery And Controlled Release. Int. J. Nanomed. 2019, 14, 8001. [Google Scholar] [CrossRef]
- Jhaveri, A.M.; Torchilin, V.P. Multifunctional Polymeric Micelles for Delivery of Drugs and SiRNA. Front. Pharmacol. 2014, 5, 77. [Google Scholar] [CrossRef]
- Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers 2021, 13, 477. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Lin, L.; Li, H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int. J. Nanomed. 2020, 15, 10385–10399. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Z.; Shi, F.; Ding, J.; Xiao, C.; Zhuang, X.; He, C.; Chen, L.; Chen, X. Disulfide Crosslinked PEGylated Starch Micelles as Efficient Intracellular Drug Delivery Platforms. Soft Matter 2013, 9, 2224–2233. [Google Scholar] [CrossRef]
- Li, Y.; Sutrisno, L.; Hou, Y.; Fei, Y.; Xue, C.; Hu, Y.; Li, M.; Luo, Z. A Redox-Activatable Biopolymer-Based Micelle for Sequentially Enhanced Mitochondria-Targeted Photodynamic Therapy and Hypoxia-Dependent Chemotherapy. Chem. Commun. 2020, 56, 9978–9981. [Google Scholar] [CrossRef]
- Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, Characterisation, Preparation, and Recent Innovation in Clinical Applications. J. Drug Target. 2018, 27, 742–761. [Google Scholar] [CrossRef]
- Nisini, R.; Poerio, N.; Mariotti, S.; de Santis, F.; Fraziano, M. The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Front. Immunol. 2018, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chi, Y.; Guo, C.; Feng, S.; Liu, J.; Sun, K.; Wu, Z. Chitooligosaccharides Modified Reduction-Sensitive Liposomes: Enhanced Cytoplasmic Drug Delivery and Osteosarcomas-Tumor Inhibition in Animal Models. Pharm. Res. 2017, 34, 2172–2184. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Liu, B.; Behl, G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox-Responsive Nanogels in Drug Delivery. Macromol. Biosci. 2019, 19, e1900071. [Google Scholar] [CrossRef] [PubMed]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/Living Radical Polymerization: Features, Developments, and Perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Nuyken, O.; Pask, S.D. Ring-Opening Polymerization—An Introductory Review. Polymers 2013, 5, 361–403. [Google Scholar] [CrossRef] [Green Version]
Reduction Sensitive Moiety | Chemical Structure | Structure after GSH Reduction | Studies Utilizing These Moieties |
---|---|---|---|
Disulfide | [7,32,38,39,44,59,60,61,62,63,64,65,66,67,68,69,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109] | ||
Diselenide | [29,46,72,73,74,75,76,77,79,80,81,82,83,84] | ||
Succinimide-thioether | [8,28,47,48,49,50,51,52] | ||
Tetrasulfide | [53,54,55,56] | ||
Platin conjugation | octahedral | square planar | [30,89,90] |
Micelle Components | S-S Source | S-S Position | Payload | Biological Evaluation | Ref. |
---|---|---|---|---|---|
LMWSC, Lipoic acid | Lipoic acid | Linker (backbone) | DOX | HEK293, HeLa, AGS (in vitro) | [39] |
Chitlac, Pluronic-SS-NH2, spiropyran/boronic acid conjugated poly(dimethylamino ethyl methacrylate-co-methacrylic acid) | Pluronic-SS-NH2 | Linker (2 moieties) | Taxol | MDCK, KB (in vitro) | [62] |
di-LA-PC, | Lipoic acid | Crosslinker (core) | PTX | MCF-7, A549, HrGp-2 (in vitro), BALB/c mice with 4T1 mammary carcinoma cells (in vivo) | [67] |
P(PEGMEMA), MAU, DSDMA | DSDMA | Crosslinker (core) | Vitamin B2 | COS-1 (in vitro) | [66] |
Chitosan, hyaluronic acid, | DPAH | Linker (2 moieties) | Gambogic acid | A549 (in vitro), BALB/c mice with A549 tumors (in vivo) | [44] |
Xylan, curcumin | DPA | Linker (2-moieties) | 5-fluorouracil-stearic acid, curcumin | HT-29, HCT-15 (in vitro) | [63] |
poly(gamma-benzoyl-L-glutamate)-block-dextran | DPA | Crosslinker (shell) | DOX | HeLa, HepG2 (in vitro) | [68] |
mPEG, PZLL | Cysteamine hydrochloride | Linker (2 moieties) | DOX | HeLa, HepG2 (in vitro), BALB/c nude mice (in vivo) | [115] |
mPEG, PZLL | dithiodipropionic chloride | Linker (2 moieties) | DOX | MCF-7 (in vitro) | [111] |
BACy, AIBN, PBLG, NIPPAM | Cysteamine hydrochloride | Crosslinker (core) | DOX | HeLa, HUVEC (in vitro) | [114] |
LMWP, Vitamin E succinate | L-cysteine | Crosslinker (shell) | DTX, microRNA-4638-5p | PC3, Du145 (in vitro), BALB/c mice bearing PC3 tumor (in vivo) | [113] |
PEG, PCL, PPE | 2-mercaptoethanol | Crosslinker (shell) | DOX | A549 (in vitro) | [112] |
DOX, DSDA, and mPEG-NH2 | DSDA | Linker (backbone) | DOX | A549 (in vitro) | [59] |
PEO-b-PFMA | DTME | Crosslinker (core) | DOX | HEK293, HepG2 (in vitro) | [38] |
mPEG-b-PAE and PAE-SS-mPEG | Cystamine | Linker (side chain) | DOX | HepG2 (in vitro) | [60] |
folic acid-PEG-PDS | PDS | Crosslinker (core) | Curcumin | HeLa (in vitro), BALB/c with xenograft model of cervical cancer (in vivo) | [65] |
N-acetyl glucosamine-poly(styrene-alt-maleic anhydride)58-b-polystyrene130 | cystamine | Crosslinker (shell) | DOX | A549, MCF-7 (in vitro) | [69] |
mPEG, P(TPE-co-AEMA) | 2,2′-dithiodiethanol | Linker (backbone) | DOX | 4T1 (in vitro), BALB/c mice bearing 4T1 tumors (in vivo) | [110] |
Liposome Components | Disulfide Source | Payload | Biological Evaluation | Ref. |
---|---|---|---|---|
SS-PC, cholesterol, DSPE-PEG2000 | 3-(tritylthio)propionic acid in SS-PC | PTX | MCF-7, A549 (in vitro), 4T1 tumor-bearing BALB/c mice (in vivo) | [91] |
SS-PC, DSPC, DSPE-PEG2000, Cholesterol | 3-(tritylthio)propionic acid in SS-PC | Irinotecan | MCF-7, A549 (in vitro) 4T1 tumor-bearing BALB/c mice and SD rats (in vivo) | [92] |
CPT-SS-GPC | 3-(tritylthio)propionic acid of different chain lengths (3 and 11) & 2-(pyridyl-disulfanyl)ethanol | CPT | MCF-7, HepG2, A549 (in vitro) MCF-7 inoculated BALB/c mice (in vivo) | [93] |
Chol-SPG, Glucose, Chol-TPP | DPA | DOX & LND | C6 and bEnd.3 (in vitro) C6-bearing Kunming mice (in vivo) | [7] |
PTX-SS-lysophosphatidylcholine, cholesterol, EPC, mPEG2000-DSPE | 2-hydroxyethyl disulfide | PTX | MCF-7, A549 (in vitro) | [94] |
DSPE-PEG2000-Estrogen, Chol-SS-COOH, COS | DPA | DOX | MG63, L02 (in vitro) MG63 osteosarcoma inoculated BALB/c mice (in vivo) | [95] |
Chol-SS-mPEG, Hyaluronic acid | DPA | DOX | L02, MG63 (in vitro) SD rats and MG63 inoculated BALB/c mice (in vivo) | [96] |
MPA-SS-NH2, PPa, Lyso-PC, EDC, DMAP | AEDP | NLG8189 | 4T1 (in vitro) 4T1 breast cancer inoculated BALB/c mice | [97] |
Nanogel Components | S-S Source and Position | S-S Cross-Linking Synthetic Route | Payload | Biological Evaluation | Ref. |
---|---|---|---|---|---|
EDDET, PETMA, TEA, Pluronic-127 | EDDET and PETMA (crosslinker) | Radical polymerization | Rhodamine B dye | HeLa (in vitro) | [98] |
2-(2-methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, BAC | BAC (crosslinker) | Radical polymerization | DOX | HEK-293T, HeLa (in vitro) | [99] |
1′-(2-methacryloxyethyl)-3′,3′-dimethyl-6-nitro-spiro(2H-1-benzo-pyran-2,2′-indoline), acrylic acid, BAC | BAC (crosslinker) | Radical polymerization | DOX | MCF-7 (in vitro) | [100] |
N-Isopropylacrylamide (NIPA), N-hydroxyethylacrylamide (HEAA), BAC | BAC (crosslinker) | Radical polymerization | Rhodamine 6G Dye, propranolol | L929 (in vitro) | [101] |
PVOH-b-PNVCL | DPA (crosslinker) | Radical polymerization | Nile red | MEL-5, L929 (in vitro) | [122] |
MAHA, CBA | CBA (crosslinker) | Radical polymerization | DOX | H22, LNCaP (in vitro), BALB/c mice injected with LNCaP, ICR mice injected with H22 (in vivo) | [120] |
BLG-NCA, LC-NCA, mPEG1900-NH2 | L-cystine (crosslinker) | ROP | indomethacin | HeLa (in vitro) | [103] |
mPEG-P(LP-co-LC) | L-cystine (crosslinker) | ROP | DOX | RM-1 (in vitro), C57BL/6 mice injected with RM-1 cells (in vivo) | [119] |
R9-PEG-P(LP-co-LC) | L-cystine (crosslinker) | ROP | HCPT | BC 5637 (in vitro), SD rats with orthotopic BC, C57BI/6 mice with orthotopic BC (in vivo) | [118] |
DMA-PLL-LC | L-cystine (crosslinker) | ROP | DOX | HepG2 (in vitro) | [117] |
AMPD, BAC, PEG | BAC (crosslinker) | Michael addition polymerization | FITC-dextran | - | [104] |
Pe-PCL-b-PAA | 2-hydroxyethyl disulfide (crosslinker) | Branched arm crosslinking | DOX | C6 glioma cells, fibroblast cells, HaCat cells (in vitro) | [105] |
poly(N-vinylpyrrolidone-co-N-vinylformamide), DMAP, dithioglycolic acid | DMAP + dithiodiglycolic acid (crosslinker) | Self-crosslinking | DOX | HeLa (in vitro) | [64] |
PSM, furfuryl amine, hydrazine, DTME | DTME (crosslinker) | Self-crosslinking | DOX | HepG2, HEK293 (in vitro) | [106] |
2,6-diamino pyridine, uracil-functionalized poly(p-phenylenevinylene) | DTSP (crosslinker) | Self-crosslinking | DOX | HeLa (in vitro) | [107] |
Hyaluronic acid, cystamine, gold nanorods (AuNRs) | Cystamine (crosslinker) | Self-crosslinking | DOX | MCF-7, drug-resistant MCF-7 ADR (in vitro) | [108] |
Alginate, cystamine | Cystamine (crosslinker) | Self-crosslinking | DOX | CAL-72 (in vitro) | [121] |
Xanthan, cystamine tetra-hydrazine, | Cystamine tetra-hydrazine (crosslinker) | Self-crosslinking | DOX | HeLa, 3T3 cells (in vitro) | [102] |
MAA, CPT, Bis, HSEMA | HSEMA (linker) | - | CPT | HepG2 (in vitro) HepG2 tumor-bearing BALB/c mice (in vivo) | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed, H.F.; Abuwatfa, W.H.; Husseini, G.A. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. Nanomaterials 2022, 12, 3183. https://doi.org/10.3390/nano12183183
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. Nanomaterials. 2022; 12(18):3183. https://doi.org/10.3390/nano12183183
Chicago/Turabian StyleAbed, Heba F., Waad H. Abuwatfa, and Ghaleb A. Husseini. 2022. "Redox-Responsive Drug Delivery Systems: A Chemical Perspective" Nanomaterials 12, no. 18: 3183. https://doi.org/10.3390/nano12183183
APA StyleAbed, H. F., Abuwatfa, W. H., & Husseini, G. A. (2022). Redox-Responsive Drug Delivery Systems: A Chemical Perspective. Nanomaterials, 12(18), 3183. https://doi.org/10.3390/nano12183183