Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Synthesis and Physical Characterization of COP Photocatalysts
3.2. Photochemical Characterization
3.3. Nanosecond Time-Resolved Transient Absorption Spectroscopy (TAS)
3.4. Electrochemical Characterization
3.5. Characterization of Photogenerated Electron and Holes
3.6. Photocatalytic Water Splitting Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Adv. Mater. 2018, 30, 1801955. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Gu, G.; Fang, D.; Xiang, X.; Zhang, W.; Zhu, Y.; Wang, J.; Cuo, J.; Cui, P.; et al. Triboelectric Plasma CO2 Reduction Reaching a Mechanical Energy Conversion Efficiency of 2.3%. Adv. Sci. 2022, 9, 2201633. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Gu, G.; Xiang, X.; Zhang, W.; Shi, X.; Zhao, K.; Zhu, Y.; Guo, J.; Cui, P.; et al. Triboelectric Plasma Decomposition of CO2 at Room Temperature Driven by Mechanical Energy. Nano Energy 2021, 88, 106287. [Google Scholar] [CrossRef]
- Novoa-Cid, M.; Baldovi, H.G. Study of the Photothermal Catalytic Mechanism of CO2 Reduction to CH4 by Ruthenium Nanoparticles Supported on Titanate Nanotubes. Nanomaterials 2020, 10, 2212. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Li, J.; Cheng, G. Selective Aerobic Oxidation of Alkyl Aromatics on Bi2MoO6 Nanoplates Decorated with Pt Nanoparticles under Visible Light Irradiation. Chem. Commun. 2018, 54, 12194–12197. [Google Scholar] [CrossRef]
- Zhang, T.; Xing, G.; Chen, W.; Chen, L. Porous Organic Polymers: A Promising Platform for Efficient Photocatalysis. Mater. Chem. Front. 2020, 4, 332–353. [Google Scholar] [CrossRef]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, Optimized Morphologies, and Advanced Strategies for Photocatalytic Applications of WO3 Based Photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef]
- Liao, G.; Tao, X.; Fang, B. An Innovative Synthesis Strategy for High-Efficiency and Defects-Switchable-Hydrogenated TiO2 Photocatalysts. Matter 2022, 5, 377–379. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y.; Zhang, B. Rational Design of Semiconductor-Based Photocatalysts for Advanced Photocatalytic Hydrogen Production: The Case of Cadmium Chalcogenides. Inorg. Chem. Front. 2016, 3, 591–615. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, G.; Wang, L.; Irvine, J.T.S. Inorganic Perovskite Photocatalysts for Solar Energy Utilization. Chem. Soc. Rev. 2016, 45, 5951–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Kim, H.; Moon, G.; Choi, W. Photoinduced Charge Transfer Processes in Solar Photocatalysis Based on Modified TiO2. Energy Environ. Sci. 2016, 9, 411–433. [Google Scholar] [CrossRef]
- Kim, J.; Choi, W. Hydrogen Producing Water Treatment through Solar Photocatalysis. Energy Environ. Sci. 2010, 3, 1042–1045. [Google Scholar] [CrossRef]
- Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Appl. Catal. A Gen. 2018, 555, 47–74. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, A.-F.; Cao, C.-S.; Zhao, B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water. Coord. Chem. Rev. 2019, 390, 50–75. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Deng, X.; Li, Z. Metal–Organic Frameworks (MOFs) for Photocatalytic CO2 Reduction. Catal. Sci. Technol. 2017, 7, 4893–4904. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and Photocatalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. [Google Scholar] [CrossRef]
- Rahman, M.; Tian, H.; Edvinsson, T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew. Chem. Int. Ed. 2020, 59, 16278–16293. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Li, X.; Fang, B. Emerging Polymeric Carbon Nitride Z-Scheme Systems for Photocatalysis. Cell Rep. Phys. Sci. 2021, 2, 100355. [Google Scholar] [CrossRef]
- Tan, Z.-R.; Xing, Y.-Q.; Cheng, J.-Z.; Zhang, G.; Shen, Z.-Q.; Zhang, Y.-J.; Liao, G.; Chen, L.; Liu, S.-Y. EDOT-Based Conjugated Polymers Accessed via C–H Direct Arylation for Efficient Photocatalytic Hydrogen Production. Chem. Sci. 2022, 13, 1725–1733. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Liu, S.-Y.; Fang, B.; Yang, H. Emerging Frontiers of Z-Scheme Photocatalytic Systems. Trends Chem. 2022, 4, 111–127. [Google Scholar] [CrossRef]
- Colson, J.W.; Dichtel, W.R. Rationally Synthesized Two-Dimensional Polymers. Nat. Chem. 2013, 5, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Xiang, Z.; Cao, D.; Dai, L. Well-Defined Two Dimensional Covalent Organic Polymers: Rational Design, Controlled Syntheses, and Potential Applications. Polym. Chem. 2015, 6, 1896–1911. [Google Scholar] [CrossRef]
- Abuzeid, H.R.; EL-Mahdy, A.F.M.; Kuo, S.-W. Covalent Organic Frameworks: Design Principles, Synthetic Strategies, and Diverse Applications. Giant 2021, 6, 100054. [Google Scholar] [CrossRef]
- Feng, X.; Ding, X.; Jiang, D. Covalent Organic Frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Lee, Y.-R.; Zhang, S.; Ahn, W.-S. Triazine-Based Covalent Organic Polymers: Design, Synthesis and Applications in Heterogeneous Catalysis. J. Mater. Chem. A 2016, 4, 16288–16311. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, G.; Cui, Y.; Liu, Z.; Li, J.; Han, F.; Liu, Y.; Sun, X.; Gong, X.; Zhai, Y.; et al. A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angew. Chem. Int. Ed. 2019, 58, 4906–4910. [Google Scholar] [CrossRef]
- Díaz, U.; Corma, A. Ordered Covalent Organic Frameworks, COFs and PAFs. From Preparation to Application. Coord. Chem. Rev. 2016, 311, 85–124. [Google Scholar] [CrossRef]
- Myungeun, S.; Hillmyer, M.A. Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation. Science 2012, 336, 1422–1425. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhou, X.; Zhou, C.; Zhong, S.; He, X.; Qin, C.; Cao, D. Covalent-Organic Polymers for Carbon Dioxide Capture. J. Mater. Chem. 2012, 22, 22663–22669. [Google Scholar] [CrossRef]
- Hopkins, J.; Fidanovski, K.; Lauto, A.; Mawad, D. All-Organic Semiconductors for Electrochemical Biosensors: An Overview of Recent Progress in Material Design. Front. Bioeng. Biotechnol. 2019, 7, 237. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, H.; Chen, Y.; Liu, Z.; Yu, B.; Zhao, Y.; Yang, Z.; Han, B.; Liu, Z. Visible-Light-Driven Photoreduction of CO2 to CH4 over N,O,P-Containing Covalent Organic Polymer Submicrospheres. ACS Catal. 2018, 8, 4576–4581. [Google Scholar] [CrossRef]
- Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. Well-Defined 2D Covalent Organic Polymers for Energy Electrocatalysis. ACS Energy Lett. 2017, 2, 1308–1314. [Google Scholar] [CrossRef]
- Feldblyum, J.I.; McCreery, C.H.; Andrews, S.C.; Kurosawa, T.; Santos, E.J.G.; Duong, V.; Fang, L.; Ayzner, A.L.; Bao, Z. Few-Layer, Large-Area, 2D Covalent Organic Framework Semiconductor Thin Films. Chem. Commun. 2015, 51, 13894–13897. [Google Scholar] [CrossRef]
- Dong, J.; Han, X.; Liu, Y.; Li, H.; Cui, Y. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2020, 59, 13722–13733. [Google Scholar] [CrossRef]
- Wang, L.; Fan, H.; Bai, F. Porphyrin-Based Photocatalysts for Hydrogen Production. MRS Bull. 2020, 45, 49–56. [Google Scholar] [CrossRef]
- Liao, P.; Hu, Y.; Liang, Z.; Zhang, J.; Yang, H.; He, L.-Q.; Tong, Y.-X.; Liu, J.-M.; Chen, L.; Su, C.-Y. Porphyrin-Based Imine Gels for Enhanced Visible-Light Photocatalytic Hydrogen Production. J. Mater. Chem. A 2018, 6, 3195–3201. [Google Scholar] [CrossRef]
- Patra, B.C.; Khilari, S.; Manna, R.N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A Metal-Free Covalent Organic Polymer for Electrocatalytic Hydrogen Evolution. ACS Catal. 2017, 7, 6120–6127. [Google Scholar] [CrossRef]
- Chen, C.; Joshi, T.; Li, H.; Chavez, A.D.; Pedramrazi, Z.; Liu, P.-N.; Li, H.; Dichtel, W.R.; Bredas, J.-L.; Crommie, M.F. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano 2018, 12, 385–391. [Google Scholar] [CrossRef]
- Fan, Z.; Nomura, K.; Zhu, M.; Li, X.; Xue, J.; Majima, T.; Osakada, Y. Synthesis and Photocatalytic Activity of Ultrathin Two-Dimensional Porphyrin Nanodisks via Covalent Organic Framework Exfoliation. Commun. Chem. 2019, 2, 55. [Google Scholar] [CrossRef]
- Meng, Y.; Luo, Y.; Shi, J.-L.; Ding, H.; Lang, X.; Chen, W.; Zheng, A.; Sun, J.; Wang, C. 2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angew. Chem. Int. Ed. 2020, 59, 3624–3629. [Google Scholar] [CrossRef]
- Chen, R.; Shi, J.-L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed Synthesis of a 2D Porphyrin-Based Sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 6430–6434. [Google Scholar] [CrossRef]
- Singh, M.K.; Bandyopadhyay, D. A Cross-Linked Manganese Porphyrin as Highly Efficient Heterogeneous Catalyst for Selective Oxidation of Cycloalkenes/Alkanes. J. Chem. Sci. 2014, 126, 1707–1713. [Google Scholar] [CrossRef]
- Căta, L.; Terenti, N.; Cociug, C.; Hădade, N.D.; Grosu, I.; Bucur, C.; Cojocaru, B.; Parvulescu, V.I.; Mazur, M.; Čejka, J. Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki–Miyaura Cross-Coupling. ACS Appl. Mater. Interfaces 2022, 14, 10428–10437. [Google Scholar] [CrossRef]
- Gouterman, M. Spectra of Porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. [Google Scholar] [CrossRef]
- Venkatesh, Y.; Venkatesan, M.; Ramakrishna, B.; Bangal, P.R. Ultrafast Time-Resolved Emission and Absorption Spectra of Meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy. J. Phys. Chem. B 2016, 120, 9410–9421. [Google Scholar] [CrossRef]
- Mandal, A.K.; Taniguchi, M.; Diers, J.R.; Niedzwiedzki, D.M.; Kirmaier, C.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four Meso-Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. J. Phys. Chem. A 2016, 120, 9719–9731. [Google Scholar] [CrossRef]
- Tsai, H.-W.; Hsueh, K.-L.; Chen, M.-H.; Hong, C.-W. Electronic and Optical Properties of Polythiophene Molecules and Derivatives. Crystals 2021, 11, 1292. [Google Scholar] [CrossRef]
- Bayat, A.; Saievar-Iranizad, E. Synthesis of Green-Photoluminescent Single Layer Graphene Quantum Dots: Determination of HOMO and LUMO Energy States. J. Lumin. 2017, 192, 180–183. [Google Scholar] [CrossRef]
- Cabrero-Antonino, M.; Albero, J.; García-Vallés, C.; Álvaro, M.; Navalón, S.; García, H. Plasma-Induced Defects Enhance the Visible-Light Photocatalytic Activity of MIL-125(Ti)-NH2 for Overall Water Splitting. Chem.—A Eur. J. 2020, 26, 15682–15689. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Abraira, P.; Babaryk, A.A.; Montero-Lanzuela, E.; Contreras-Almengor, O.R.; Cabrero-Antonino, M.; Grape, E.S.; Willhammar, T.; Navalón, S.; Elkäim, E.; García, H.; et al. A Novel Porous Ti-Squarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Adv. Mater. 2021, 33, 2106627. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X.-Y.; Gao, L.; Qiao, L.; Li, X.-B.; Wu, L.-Z.; Wang, C. Rational Design of Isostructural 2D Porphyrin-Based Covalent Organic Frameworks for Tunable Photocatalytic Hydrogen Evolution. Nat. Commun. 2021, 12, 1354. [Google Scholar] [CrossRef]
- Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks. ACS Omega 2022, 7, 7172–7178. [Google Scholar] [CrossRef]
- Chen, X.; Shi, R.; Chen, Q.; Zhang, Z.; Jiang, W.; Zhu, Y.; Zhang, T. Three-Dimensional Porous g-C3N4 for Highly Efficient Photocatalytic Overall Water Splitting. Nano Energy 2019, 59, 644–650. [Google Scholar] [CrossRef]
- Fang, Y.; Bhyrappa, P.; Ou, Z.; Kadish, K.M. Planar and Nonplanar Free-Base Tetraarylporphyrins: β-Pyrrole Substituents and Geometric Effects on Electrochemistry, Spectroelectrochemistry, and Protonation/Deprotonation Reactions in Nonaqueous Media. Chem.—A Eur. J. 2014, 20, 524–532. [Google Scholar] [CrossRef]
- Arlegui, A.; Torres, P.; Cuesta, V.; Crusats, J.; Moyano, A. Chiral Amphiphilic Secondary Amine-Porphyrin Hybrids for Aqueous Organocatalysis. Molecules 2020, 25, 3420. [Google Scholar] [CrossRef]
- Gonçalves, P.J.; De Boni, L.; Neto, N.M.B.; Rodrigues, J.J.; Zílio, S.C.; Borissevitch, I.E. Effect of Protonation on the Photophysical Properties of Meso-Tetra(Sulfonatophenyl) Porphyrin. Chem. Phys. Lett. 2005, 407, 236–241. [Google Scholar] [CrossRef]
- Saegusa, Y.; Ishizuka, T.; Shiota, Y.; Yoshizawa, K.; Kojima, T. Acid–Base Properties of a Freebase Form of a Quadruply Ring-Fused Porphyrin—Stepwise Protonation Induced by Rigid Ring-Fused Structure. J. Org. Chem. 2017, 82, 322–330. [Google Scholar] [CrossRef]
Sample | %N | %C | %H | BET Surface Area (m2/g) | Pore Size (nm) |
---|---|---|---|---|---|
COP–1 | 5.418 | 80.250 | 4.089 | 43 | 13.9 |
COP–2 | 4.962 | 76.820 | 3.967 | 146 | 6.2 |
COP–3 | 5.059 | 75.902 | 4.307 | 638 | 4.4 |
Absorption (nm) * | Emission (nm) ** | |||||
---|---|---|---|---|---|---|
Sample | S Band | Qx (0,0) | Qx (0,0) | Qx (0,1) | Eop0,0(eV) *** | rΦPL (%) **** |
Porph-Br4 | 340 | 652 | 652 | 724 | 2.023 | - |
COP–1 | 415 | 651 | 649 | 720 | 2.049 | 7.1 |
COP–2 | 418 | 646 | 660 | 730 | 1.931 | 4.6 |
COP–3 | 422 | 641 | 654 | 723 | 2.013 | 48 |
Sample | Eop0,0 * (eV) | Ered (V) | Eox (V) | Eelec0,0 ** (eV) | Current Density (mA/cm2) |
---|---|---|---|---|---|
Porph-Br4 | 1.96 | −0.95 | 0.81 | 1.76 | 0.186 |
COP–1 | 2.10 | −1.03 | 1.28 | 2.31 | 0.028 |
COP–2 | 1.91 | −0.92 | 1.24 | 2.12 | 0.038 |
COP–3 | 2.05 | −0.95 | 1.29 | 2.24 | 0.247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoa-Cid, M.; Melillo, A.; Ferrer, B.; Alvaro, M.; Baldovi, H.G. Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling. Nanomaterials 2022, 12, 3197. https://doi.org/10.3390/nano12183197
Novoa-Cid M, Melillo A, Ferrer B, Alvaro M, Baldovi HG. Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling. Nanomaterials. 2022; 12(18):3197. https://doi.org/10.3390/nano12183197
Chicago/Turabian StyleNovoa-Cid, Maria, Arianna Melillo, Belén Ferrer, Mercedes Alvaro, and Herme G. Baldovi. 2022. "Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling" Nanomaterials 12, no. 18: 3197. https://doi.org/10.3390/nano12183197
APA StyleNovoa-Cid, M., Melillo, A., Ferrer, B., Alvaro, M., & Baldovi, H. G. (2022). Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling. Nanomaterials, 12(18), 3197. https://doi.org/10.3390/nano12183197