Dual-Channel Mid-Infrared Toroidal Metasurfaces for Wavefront Modulation and Imaging Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Wavefront Modulation
3.2. Two-Bit Programmable Imaging
3.3. Thermal Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasani, S.; Curtin, K.; Wu, N.Q. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Liu, X.; Fan, K.; Shadrivov, I.V.; Padilla, W.J. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 2017, 25, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 2009, 8, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Xu, R.; Qin, Z.; Teng, C.; Deng, S.; Chen, M.; Cheng, Y.; Deng, H.; Yang, H.; et al. Tunable circular dichroism based on graphene-metal split ring resonators. Opt. Express 2021, 29, 21020–21030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wong, C.L.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Nanophotonics 2020, 10, 259–293. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yang, Y.; Li, J.; Zhang, Y.; Wu, L.; Zhang, Z.; Yang, M.; Zheng, C.; Li, J.; et al. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 2020, 163, 34–42. [Google Scholar] [CrossRef]
- Li, F.; Tang, T.; Mao, Y.; Luo, L.; Li, J.; Xiao, J.; Liu, K.; Shen, J.; Li, C.; Yao, J. Metal–Graphene Hybrid Chiral Metamaterials for Tunable Circular Dichroism. Ann. Der Phys. 2020, 532, 2000065. [Google Scholar] [CrossRef]
- Ou, J.; Luo, X.-Q.; Luo, Y.-L.; Zhu, W.-H.; Chen, Z.-Y.; Liu, W.-M.; Wang, X.-L. Near-infrared dual-wavelength plasmonic switching and digital metasurface unveiled by plasmonic Fano resonance. Nanophotonics 2020, 10, 947–957. [Google Scholar] [CrossRef]
- Dang, Y.; Mu, Y.; Qi, J. Highly decorrelated multiplexing metasurface for simultaneous dual-wavelength and dual-polarization continuous phase manipulation. Opt. Express 2020, 28, 24538–24549. [Google Scholar] [CrossRef]
- Leonhardt, U. Optical conformal mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Yang, T.; Luo, H.; Qiu, C.W. Structured thermal surface for radiative camouflage. Nat. Commun. 2018, 9, 273. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, S.; Li, Y.; Lei, D.Y.; Luo, X.; Qiu, C.W. Illusion thermotics. Adv. Mater. 2018, 30, 1707237. [Google Scholar] [CrossRef]
- Shang, J.; Tian, B.Y.; Jiang, C.R.; Huang, J.P. Digital thermal metasurface with arbitrary infrared thermogram. Appl. Phys. Lett. 2018, 113, 261902. [Google Scholar] [CrossRef]
- Hamouleh-Alipour, A.; Mir, A.; Farmani, A. Design and Analytical Evaluation of a High Resistance Sensitivity Bolometer Sensor Based on Plasmonic Metasurface Structure. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.; Zhao, W.; Ren, X.; Cheng, Q.; Luo, X.; Fang, N.X.; Hu, R. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 2020, 9, 855–863. [Google Scholar] [CrossRef]
- Pitruzzello, G.; Krauss, T.F. Photonic crystal resonances for sensing and imaging. J. Opt. 2018, 20, 073004. [Google Scholar] [CrossRef]
- Tognazzi, A.; Rocco, D.; Gandolfi, M.; Locatelli, A.; Carletti, L.; de Angelis, C. High Quality Factor Silicon Membrane Metasurface for Intensity-Based Refractive Index Sensing. Optics 2021, 2, 193–199. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zheng, C.; Yue, Z.; Wang, S.; Li, M.; Zhao, H.; Zhang, Y.; Yao, J. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 2021, 182, 506–515. [Google Scholar] [CrossRef]
- Guo, W.L.; Wang, G.M.; Hou, H.S.; Chen, K.; Feng, Y. Multi-functional coding metasurface for dual-band independent electromagnetic wave control. Opt. Express 2019, 27, 19196–19211. [Google Scholar] [CrossRef] [PubMed]
- Carletti, L.; Gandolfi, M.; Rocco, D.; Tognazzi, A.; de Ceglia, D.; Vincenti, M.A.; de Angelis, C. Reconfigurable nonlinear response of dielectric and semiconductor metasurfaces. Nanophotonics 2021, 10, 4209–4221. [Google Scholar] [CrossRef]
- Wan, C.; Horak, E.H.; King, J.; Salman, J.; Zhang, Z.; Zhou, Y.; Roney, P.; Gundlach, B.; Ramanathan, S.; Goldsmith, R.H.; et al. Limiting Optical Diodes Enabled by the Phase Transition of Vanadium Dioxide. ACS Photonics 2018, 5, 2688–2692. [Google Scholar] [CrossRef]
- Wei, S.; Cao, G.; Lin, H.; Yuan, X.; Somekh, M.; Jia, B. A Varifocal Graphene Metalens for Broadband Zoom Imaging Covering the Entire Visible Region. ACS Nano 2021, 15, 4769–4776. [Google Scholar] [CrossRef]
- Rahmani, M.; Xu, L.; Miroshnichenko, A.E.; Komar, A.; Camacho-Morales, R.; Chen, H.; Zárate, Y.; Kruk, S.; Zhang, G.; Neshev, D.N.; et al. Reversible Thermal Tuning of All-Dielectric Metasurfaces. Adv. Funct. Mater. 2017, 27, 1700580. [Google Scholar] [CrossRef]
- Rocco, D.; Gandolfi, M.; Tognazzi, A.; Pashina, O.; Zograf, G.; Frizyuk, K.; Gigli, C.; Leo, G.; Makarov, S.; Petrov, M.; et al. Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures. Opt. Express 2021, 29, 37128–37139. [Google Scholar] [CrossRef]
- Shen, F.; Kang, Q.; Wang, J.; Guo, K.; Zhou, Q.; Guo, Z. Dielectric Metasurface-Based High-Efficiency Mid-Infrared Optical Filter. Nanomaterials 2018, 8, 938. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y. Tunable optical metamaterials and their applications. Chin. Opt. 2021, 14, 968–985. [Google Scholar]
- Qu, Y.; Li, Q.; Du, K.; Cai, L.; Lu, J.; Qiu, M. Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST. Laser Photonics Rev. 2017, 11, 170091. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.L.; Yin, Y.; Hosaka, S. The dependence of crystallization on temperature in the nanosecond timescale for GeTe-based fast phase-change resistor. Chem. Phys. Lett. 2016, 650, 102–106. [Google Scholar] [CrossRef]
- Chu, C.H.; Tseng, M.L.; Chen, J.; Wu, P.C.; Chen, Y.-H.; Wang, H.-C.; Chen, T.-Y.; Hsieh, W.T.; Wu, H.J.; Sun, G.; et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 2016, 10, 986–994. [Google Scholar] [CrossRef]
- Lee, W.S.L.; Kaltenecker, K.; Nirantar, S.; Withayachumnankul, W.; Walther, M.; Bhaskaran, M.; Fischer, B.M.; Sriram, S.; Fumeaux, C. Terahertz near-field imaging of dielectric resonators. Opt. Express 2017, 25, 3756–3763. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Zhou, F.; Luo, X.; Zhang, Z.; Qin, Y.; Zhuo, S.; Gao, E.; Li, H.; Yi, Z. Triple plasmon-induced transparency and optical switch desensitized to polarized light based on a mono-layer metamaterial. Opt. Express 2021, 29, 13949–13959. [Google Scholar] [CrossRef]
- Xiong, Q.; Yu, H.; Zhang, Y.; Gao, X.; Chen, C. Broadband near infrared all-dielectric metasurface absorber. Results Phys. 2021, 30, 104813. [Google Scholar] [CrossRef]
- Basharin, A.A.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M.; Fedotov, V.A.; Savinov, V.; Zheludev, N.I. Dielectric Metamaterials with Toroidal Dipolar Response. Phys. Rev. X 2015, 5, 011036. [Google Scholar] [CrossRef]
- Savinov, V.; Fedotov, V.A.; Zheludev, N.I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Terekhov, P.D.; Babicheva, V.E.; Baryshnikova, K.V.; Shalin, A.S.; Karabchevsky, A.; Evlyukhin, A.B. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B 2019, 99, 045424. [Google Scholar] [CrossRef]
- Wu, P.C.; Liao, C.Y.; Savinov, V.; Chung, T.L.; Chen, W.T.; Huang, Y.-W.; Wu, P.R.; Chen, Y.-H.; Liu, A.-Q.; Zheludev, N.I.; et al. Optical Anapole Metamaterial. ACS Nano 2018, 12, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
Ref. | Structure | Range | Tunability | Imaging Application |
---|---|---|---|---|
[8] | graphene–metal split ring resonators | 0.3–0.6 mm | ① circular dichroism ② graphene | 2-bit switchable coding |
[9] | graphene–metal open rings | 0.29–0.32 mm | ① circular dichroism ② graphene | ① 1-bit coding ② 2-bit coding |
[10] | circular ring with parabolic-hole | 1–7 μm | ① polarization angle ② wavelength | ① 1-bit coding ② 2-bit coding |
[11] | two circular rings and crossed slots | 9–20 mm | ① polarization angle ② wavelength | smile-face image |
Ours | split equilateral triangular rings | 3–4 μm | ① dual channel ② polarization angle ③ GST | ① 2-bit coding ② thermal imaging |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, C.; Feng, H.; Fang, D.; Wang, J.; Zhang, Z.; Gao, Y.; Gao, Y. Dual-Channel Mid-Infrared Toroidal Metasurfaces for Wavefront Modulation and Imaging Applications. Nanomaterials 2022, 12, 3300. https://doi.org/10.3390/nano12193300
Zhang J, Liu C, Feng H, Fang D, Wang J, Zhang Z, Gao Y, Gao Y. Dual-Channel Mid-Infrared Toroidal Metasurfaces for Wavefront Modulation and Imaging Applications. Nanomaterials. 2022; 12(19):3300. https://doi.org/10.3390/nano12193300
Chicago/Turabian StyleZhang, Jingyu, Chang Liu, Hengli Feng, Dongchao Fang, Jincheng Wang, Zuoxin Zhang, Yachen Gao, and Yang Gao. 2022. "Dual-Channel Mid-Infrared Toroidal Metasurfaces for Wavefront Modulation and Imaging Applications" Nanomaterials 12, no. 19: 3300. https://doi.org/10.3390/nano12193300
APA StyleZhang, J., Liu, C., Feng, H., Fang, D., Wang, J., Zhang, Z., Gao, Y., & Gao, Y. (2022). Dual-Channel Mid-Infrared Toroidal Metasurfaces for Wavefront Modulation and Imaging Applications. Nanomaterials, 12(19), 3300. https://doi.org/10.3390/nano12193300