The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek, R.F. Toward Smart and Ultra-efficient Solid-State Lighting. Adv. Opt. Mater. 2014, 2, 809–836. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2018, 216, 1800628. [Google Scholar] [CrossRef]
- Poyiatzis, N.; Athanasiou, M.; Bai, J.; Gong, Y.; Wang, T. Monolithically integrated white light LEDs on (11–22) semi-polar GaN templates. Sci. Rep. 2019, 9, 1383. [Google Scholar] [CrossRef]
- Zhao, Y.; Tanaka, S.; Yan, Q.; Huang, C.Y.; Chung, R.B.; Pan, C.C.; Fujito, K.; Feezell, D.; Van de Walle, C.G.; Speck, J.S.; et al. High optical polarization ratio from semipolar (20 2 1) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 2011, 99, 051109. [Google Scholar] [CrossRef]
- Zhang, H.; Li, P.; Li, H.; Song, J.; Nakamura, S.; DenBaars, S.P. High polarization and fast modulation speed of dual wavelengths electroluminescence from semipolar (20-21) micro light-emitting diodes with indium tin oxide surface grating. Appl. Phys. Lett. 2020, 117, 181105. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Zhang, H.; Chow, Y.C.; Wong, M.S.; Pinna, S.; Klamkin, J.; Speck, J.S.; Nakamura, S.; Denbaars, S. Electrically driven, polarized, phosphor-free white semipolar (20-21) InGaN light-emitting diodes grown on semipolar bulk GaN substrate. Opt. Express 2020, 28, 13569–13575. [Google Scholar] [CrossRef]
- Khoury, M.; Li, H.; Li, P.; Chow, Y.C.; Bonef, B.; Zhang, H.; Wong, M.S.; Pinna, S.; Song, J.; Choi, J.; et al. Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy 2019, 67, 104236. [Google Scholar] [CrossRef]
- Leung, B.; Wang, D.; Kuo, Y.S.; Xiong, K.; Song, J.; Chen, D.; Park, S.H.; Hong, S.Y.; Choi, J.W.; Han, J. Semipolar (20-21) GaN and InGaN quantum wells on sapphire substrates. Appl. Phys. Lett. 2014, 104, 262105. [Google Scholar] [CrossRef]
- Song, J.; Choi, J.; Zhang, C.; Deng, Z.; Xie, Y.; Han, J. Elimination of Stacking Faults in Semipolar GaN and Light-Emitting Diodes Grown on Sapphire. ACS Appl. Mater. Interfaces 2019, 11, 33140–33146. [Google Scholar] [CrossRef]
- Lee, Y.J.; Chiu, C.H.; Ke, C.C.; Lin, P.C.; Lu, T.C.; Kuo, H.C.; Wang, S.C. Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1137–1143. [Google Scholar]
- Zhao, Y.; Wu, F.; Yang, T.-J.; Wu, Y.-R.; Nakamura, S.; Speck, J.S. Atomic-scale nanofacet structure in semipolar (20-2-1) and (20-21) InGaN single quantum wells. Appl. Phys. Express 2014, 7, 025503. [Google Scholar] [CrossRef]
- Okada, N.; Oshita, H.; Yamane, K.; Tadatomo, K. High-quality {20-21} GaN layers on patterned sapphire substrate with wide-terrace. Appl. Phys. Lett. 2011, 99, 242103. [Google Scholar] [CrossRef]
- Yamane, K.; Inagaki, T.; Hashimoto, Y.; Koyama, M.; Okada, N.; Tadatomo, K. Characterization of structural defects in semipolar GaN layers grown on patterned sapphire substrates. Jpn. J. Appl. Phys. 2014, 53, 035502. [Google Scholar] [CrossRef]
- Imer, B.M.; Wu, F.; DenBaars, S.P.; Speck, J.S. Improved quality (1120) a-plane GaN with sidewall lateral epitaxial overgrowth. Appl. Phys. Lett. 2006, 88, 061908. [Google Scholar] [CrossRef]
- Bai, J.; Dudley, M.; Chen, L.; Skromme, B.J.; Wagner, B.; Davis, R.F.; Chowdhury, U.; Dupuis, R.D. Structural defects and luminescence features in heteroepitaxial GaN grown on on-axis and misoriented substrates. J. Appl. Phys. 2005, 97, 116101. [Google Scholar] [CrossRef]
- Arauchi, T.; Takeuchi, S.; Hashimoto, Y.; Nakamura, Y.; Yamane, K.; Okada, N.; Imai, Y.; Kimura, S.; Tadatomo, K.; Sakai, A. Crystalline property analysis of semipolar (20-21) GaN on (22-43) patterned sapphire substrate by X-ray microdiffraction and transmission electron microscopy. Phys. Status Solidi B 2015, 252, 1149–1154. [Google Scholar] [CrossRef]
- Zywietz, T.; Neugebauer, J.; Scheffler, M. Adatom diffusion at GaN (0001) and (0001) surfaces. Appl. Phys. Lett. 1998, 73, 487–489. [Google Scholar] [CrossRef]
- Takeuchi, S.; Uchiyama, T.; Arauchi, T.; Hashimoto, Y.; Nakamura, Y.; Yamane, K.; Okada, N.; Tadatomo, K.; Sakai, A. Thickness and growth condition dependence of crystallinity in semipolar (20-21) GaN films grown on (22-43) patterned sapphire substrates. Phys. Status Solidi B 2015, 252, 1142–1148. [Google Scholar] [CrossRef]
- Song, J.; Han, J. High Quality, Mass-Producible Semipolar GaN and InGaN Light-Emitting Diodes Grown on Sapphire. Phys. Status Solidi B 2020, 257, 1900565. [Google Scholar] [CrossRef]
- Gühne, T.; Bougrioua, Z.; Vennéguès, P.; Leroux, M.; Albrecht, M. Cathodoluminescence spectroscopy of epitaxial-lateral-overgrown nonpolar (11-20) and semipolar (11-22) GaN in relation to microstructural characterization. J. Appl. Phys. 2007, 101, 113101. [Google Scholar] [CrossRef]
- Kaneta, A.; Funato, M.; Kawakami, Y. Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra. Phys. Rev. B 2008, 78, 125317. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Xu, M.; Ji, Z.; Shi, K.; Li, H.; Wei, Y.; Xu, X. Wave-shaped temperature dependence characteristics of the electroluminescence peak energy in a green InGaN-based LED grown on silicon substrate. Sci. Rep. 2020, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Munsif, M.; Mushtaq, U.; Anwar, A.R.; Muhammad, N. Green gap in GaN-based light-emitting diodes: In perspective. Crit. Rev. Solid State Mater. Sci. 2021, 46, 450–467. [Google Scholar] [CrossRef]
- Wagner, J.M.; Bechstedt, F. Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 2000, 77, 346–348. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, L.-Y.; Chen, C.-P.; Cheng, Y.-W.; Ke, M.-Y.; Hsieh, M.-Y.; Wu, H.-M.; Peng, L.-H.; Huang, J. GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength. Opt. Express 2008, 16, 10549–10556. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, Z.; Zhou, Y.; Wang, X.; Liu, B.; Xu, X.; Gao, X.; Leng, J. Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs. Appl. Surf. Sci. 2017, 410, 196–200. [Google Scholar] [CrossRef]
- Cho, H.K.; Lee, J.Y.; Kim, C.S.; Yang, G.M. Influence of strain relaxation on structural and optical characteristics of InGaN/GaN multiple quantum wells with high indium composition. J. Appl. Phys. 2002, 91, 1166–1170. [Google Scholar] [CrossRef]
- Tsai, S.C.; Lu, C.H.; Liu, C.P. Piezoelectric effect on compensation of the quantum-confined Stark effect in InGaN/GaN multiple quantum wells based green light-emitting diodes. Nano Energy 2016, 28, 373–379. [Google Scholar] [CrossRef]
- Moram, M.A.; Kappers, M.J.; Massabuau, F.; Oliver, R.A.; Humphreys, C.J. The effects of Si doping on dislocation movement and tensile stress in GaN films. J. Appl. Phys. 2011, 109, 073509. [Google Scholar] [CrossRef]
- Lobanova, A.V.; Kolesnikova, A.L.; Romanov, A.E.; Karpov, S.Y.; Rudinsky, M.E.; Yakovlev, E.V. Mechanism of stress relaxation in (0001) InGaN/GaN via formation of V-shaped dislocation half-loops. Appl. Phys. Lett. 2013, 103, 152106. [Google Scholar] [CrossRef]
- Kaneta, A.; Kim, Y.S.; Funato, M.; Kawakami, Y.; Enya, Y.; Kyono, T.; Ueno, M.; Nakamura, T. Nanoscopic Photoluminescence Properties of a Green-Emitting InGaN Single Quantum Well on a (20-21) GaN Substrate Probed by Scanning Near-Field Optical Microscopy. Appl. Phys. Express 2012, 5, 102104. [Google Scholar] [CrossRef]
- Lai, W.C.; Yen, C.H.; Chang, S.J. GaN-Based Green-Light-Emitting Diodes with InN/GaN Growth-Switched InGaN Wells. Appl. Phys. Express 2013, 6, 102101. [Google Scholar] [CrossRef]
- Wang, T.; Nakagawa, D.; Wang, J.; Sugahara, T.; Sakai, S. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells. Appl. Phys. Lett. 1998, 73, 3571–3573. [Google Scholar] [CrossRef]
- Wang, J.; Meisch, T.; Heinz, D.; Zeller, R.; Scholz, F. Internal quantum efficiency and carrier injection efficiency of c-plane, {10-11} and {11-22} InGaN/GaN-based light-emitting diodes. Phys. Status Solidi B 2016, 253, 174–179. [Google Scholar] [CrossRef]
- Watanabe, S.; Yamada, N.; Nagashima, M.; Ueki, Y.; Sasaki, C.; Yamada, Y.; Taguchi, T.; Tadatomo, K.; Okagawa, H.; Kudo, H. Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes. Appl. Phys. Lett. 2003, 83, 4906–4908. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Su, X.; Tang, W.; Li, Q.; Guo, M.; Zhang, Y.; Zhang, M.; Yun, F.; Hou, X. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs. AIP Adv. 2017, 7, 11. [Google Scholar] [CrossRef]
- Schubert, M.F.; Chhajed, S.; Kim, J.K.; Schubert, E.F.; Koleske, D.D.; Crawford, M.H.; Lee, S.R.; Fischer, A.J.; Thaler, G.; Banas, M.A. Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes. Appl. Phys. Lett. 2007, 91, 231114. [Google Scholar] [CrossRef]
- Alhassan, A.I.; Young, E.C.; Alyamani, A.Y.; Albadri, A.; Nakamura, S.; Denbaars, S.; Speck, J.S. Reduced-droop green III–nitride light-emitting diodes utilizing GaN tunnel junction. Appl. Phys. Express 2018, 11, 042101. [Google Scholar] [CrossRef]
- Akyol, F.; Nath, D.N.; Krishnamoorthy, S.; Park, P.S.; Rajan, S. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett. 2012, 100, 111118. [Google Scholar] [CrossRef]
- Son, J.H.; Lee, J.-L. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes. Opt. Express 2010, 18, 5466–5471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Zhao, W.; Hao, Z.; Luo, Y. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl. Phys. Lett. 2010, 97, 201112. [Google Scholar] [CrossRef]
- Hammersley, S.; Watson-Parris, D.; Dawson, P.; Godfrey, M.; Badcock, T.J.; Kappers, M.J.; McAleese, C.; Oliver, R.; Humphreys, C.J. The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. J. Appl. Phys. 2012, 111, 083512. [Google Scholar] [CrossRef]
- Bochkareva, N.I.; Rebane, Y.T.; Shreter, Y.G. Efficiency droop and incomplete carrier localization in InGaN/GaN quantum well light-emitting diodes. Appl. Phys. Lett. 2013, 103, 191101. [Google Scholar] [CrossRef]
- Karpov, S.Y. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review. Opt. Quantum Electron. 2014, 47, 1293–1303. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Li, Y.; Song, J.; Yang, H.; Zhang, Y.; Hu, P.; Tian, Z.; Zhang, M.; Li, Q.; Yun, F. The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM. Nanomaterials 2022, 12, 3386. https://doi.org/10.3390/nano12193386
Li A, Li Y, Song J, Yang H, Zhang Y, Hu P, Tian Z, Zhang M, Li Q, Yun F. The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM. Nanomaterials. 2022; 12(19):3386. https://doi.org/10.3390/nano12193386
Chicago/Turabian StyleLi, Aixing, Yufeng Li, Jie Song, Haifeng Yang, Ye Zhang, Peng Hu, Zhenhuan Tian, Minyan Zhang, Qiang Li, and Feng Yun. 2022. "The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM" Nanomaterials 12, no. 19: 3386. https://doi.org/10.3390/nano12193386
APA StyleLi, A., Li, Y., Song, J., Yang, H., Zhang, Y., Hu, P., Tian, Z., Zhang, M., Li, Q., & Yun, F. (2022). The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM. Nanomaterials, 12(19), 3386. https://doi.org/10.3390/nano12193386