Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of AuNR-Coated Glass Substrate
2.2. Substrate Characterization
2.3. Protein Detection Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lassiter, J.B.; Knight, M.W.; Mirin, N.A.; Halas, N.J. Reshaping the plasmonic properties of an individual nanoparticle. Nano Lett. 2009, 9, 4326–4332. [Google Scholar] [CrossRef] [PubMed]
- Ney, A.; Pampuch, C.; Koch, R.; Ploog, K.H. Programmable computing with a single magnetoresistive element. Nature 2003, 425, 485–487. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, J.; Yu, X.; Hong, R.; Zu, X.; Lin, X.; Luo, H.; Lin, W.; Yi, G. Fabrication of Au nanoparticle arrays on flexible substrate for tunable localized surface plasmon resonance. ACS Appl. Mater. Interfaces 2021, 13, 9281–9288. [Google Scholar] [CrossRef]
- Pavelka, O.; Dyakov, S.; Vesely, J.; Fucikova, A.; Sugimoto, H.; Fujii, M.; Valenta, J. Optimizing plasmon enhanced luminescence in silicon nanocrystals by gold nanorods. Nanoscale 2021, 13, 5045–5057. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Luan, J.; Wang, Z.; Jiang, Q.; Gupta, R.; Cao, S.; Liu, K.K.; Morrissey, J.J.; Kharasch, E.D.; Naik, R.R.; et al. Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays. ACS Appl. Mater. Interfaces 2021, 13, 11414–11423. [Google Scholar] [CrossRef] [PubMed]
- Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 2011, 5, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Manjavacas, A.; Garcia de Abajo, F.J. Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 2014, 5, 3548. [Google Scholar] [CrossRef]
- Kedem, O.; Tesler, A.B.; Vaskevich, A.; Rubinstein, I. Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 2011, 5, 748–760. [Google Scholar] [CrossRef]
- Hwang, Y.; Ferhan, A.R.; Yoon, B.K.; Sut, T.N.; Jeon, W.-Y.; Koo, D.J.; Jackman, J.A.; Cho, N.-J. Surface engineering of plasmonic gold nanoisland platforms for high-sensitivity refractometric biosensing applications. Appl. Mater. Today 2022, 26, 101280. [Google Scholar] [CrossRef]
- Masterson, A.N.; Muhoberac, B.B.; Gopinadhan, A.; Wilde, D.J.; Deiss, F.T.; John, C.C.; Sardar, R. Multiplexed and high-throughput label-free detection of RNA/spike protein/IgG/IgM biomarkers of SARS-CoV-2 infection utilizing nanoplasmonic biosensors. Anal. Chem. 2021, 93, 8754–8763. [Google Scholar] [CrossRef]
- Abadeer, N.S.; Fulop, G.; Chen, S.; Kall, M.; Murphy, C.J. Interactions of bacterial lipopolysaccharides with gold nanorod surfaces investigated by refractometric sensing. ACS Appl. Mater. Interfaces 2015, 7, 24915–24925. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Jordan, L.R.; Johnson, T.W.; Lee, S.H.; Wittenberg, N.J.; Oh, S.H. Topographically flat substrates with embedded nanoplasmonic devices for biosensing. Adv. Funct. Mater. 2013, 23, 2812–2820. [Google Scholar] [CrossRef]
- Dondapati, S.K.; Sau, T.K.; Hrelescu, C.; Klar, T.A.; Stefani, F.D.; Feldmann, J. Label-free biosensing based on single gold nanostars as plasmonic transducers. Acs Nano 2010, 4, 6318–6322. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Lee, S.; Liao, H.; Rostro, B.C.; Fuentes, A.; Scully, P.T.; Nehl, C.L.; Hafner, J.H. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. Acs Nano 2008, 2, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, H.; Zhang, H. Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chem. Commun. 2011, 47, 8560–8562. [Google Scholar] [CrossRef]
- Hoflich, K.; Yang, R.B.; Berger, A.; Leuchs, G.; Christiansen, S. The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition. Adv. Mater. 2011, 23, 2657–2661. [Google Scholar] [CrossRef]
- Huang, W.; Qian, W.; Jain, P.K.; El-Sayed, M.A. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett. 2007, 7, 3227–3234. [Google Scholar] [CrossRef]
- Chen, Y.; Bi, K.; Wang, Q.; Zheng, M.; Liu, Q.; Han, Y.; Yang, J.; Chang, S.; Zhang, G.; Duan, H. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 2016, 10, 11228–11236. [Google Scholar] [CrossRef]
- Semple, M.; Hryciw, A.C.; Li, P.; Flaim, E.; Iyer, A.K. Patterning of complex, nanometer-scale features in wide-area gold nanoplasmonic structures using helium focused ion beam milling. ACS Appl. Mater. Interfaces 2021, 13, 43209–43220. [Google Scholar] [CrossRef]
- Lee, M.H.; Huntington, M.D.; Zhou, W.; Yang, J.C.; Odom, T.W. Programmable soft lithography: Solvent-assisted nanoscale embossing. Nano Lett. 2011, 11, 311–315. [Google Scholar] [CrossRef]
- Gupta, V.; Probst, P.T.; Gossler, F.R.; Steiner, A.M.; Schubert, J.; Brasse, Y.; Konig, T.A.F.; Fery, A. Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Appl. Mater. Interfaces 2019, 11, 28189–28196. [Google Scholar] [CrossRef] [PubMed]
- Mieszawska, A.J.; Slawinski, G.W.; Zamborini, F.P. Directing the growth of highly aligned gold nanorods through a surface chemical amidation reaction. J. Am. Chem. Soc. 2006, 128, 5622–5623. [Google Scholar] [CrossRef] [PubMed]
- Mistark, P.A.; Park, S.; Yalcin, S.E.; Lee, D.H.; Yavuzcetin, O.; Tuominen, M.T.; Russell, T.P.; Achermann, M. Block-copolymer-based plasmonic nanostructures. ACS Nano 2009, 3, 3987–3992. [Google Scholar] [CrossRef]
- Akinoglu, G.E.; Mir, S.H.; Gatensby, R.; Rydzek, G.; Mokarian-Tabari, P. Block copolymer derived vertically coupled plasmonic arrays for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2020, 12, 23410–23416. [Google Scholar] [CrossRef]
- Vial, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir 2007, 23, 4606–4611. [Google Scholar] [CrossRef]
- Lin, X.; Hasi, W.L.; Han, S.Q.; Lou, X.T.; Lin, D.Y.; Lu, Z.W. Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection. Phys. Chem. Chem. Phys. 2015, 17, 31324–31331. [Google Scholar] [CrossRef]
- Jia, H.; Fang, C.; Zhu, X.M.; Ruan, Q.; Wang, Y.X.; Wang, J. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties. Langmuir 2015, 31, 7418–7426. [Google Scholar] [CrossRef]
- Lee, H.E.; Ahn, H.Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365. [Google Scholar] [CrossRef]
- Yang, P.; Zheng, J.; Xu, Y.; Zhang, Q.; Jiang, L. Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 2016, 28, 10508–10517. [Google Scholar] [CrossRef]
- Nusz, G.J.; Curry, A.C.; Marinakos, S.M.; Wax, A.; Chilkoti, A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano 2009, 3, 795–806. [Google Scholar] [CrossRef]
- Biswas, S.; Duan, J.; Nepal, D.; Park, K.; Pachter, R.; Vaia, R.A. Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett. 2013, 13, 6287–6291. [Google Scholar] [CrossRef] [PubMed]
- Ashkar, R.; Hore, M.J.A.; Ye, X.; Natarajan, B.; Greybush, N.J.; Lam, T.; Kagan, C.R.; Murray, C.B. Rapid large-scale assembly and pattern transfer of one-dimensional gold nanorod superstructures. ACS Appl. Mater. Interfaces 2017, 9, 25513–25521. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.C.; Chao, C.Y.; Chen, Y.F.; Wu, Y.C.; Chen, C.C. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 2006, 89, 103107. [Google Scholar] [CrossRef]
- Yang, N.; You, T.T.; Gao, Y.K.; Zhang, C.M.; Yin, P.G. Fabrication of a Flexible Gold Nanorod Polymer Metafilm via a Phase Transfer Method as a SERS Substrate for Detecting Food Contaminants. J. Agric. Food Chem. 2018, 66, 6889–6896. [Google Scholar] [CrossRef]
- Fang, C.; Shao, L.; Zhao, Y.; Wang, J.; Wu, H. A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips. Adv. Mater. 2012, 24, 94–98. [Google Scholar] [CrossRef]
- Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26, 3282–3289. [Google Scholar] [CrossRef]
- Smitha, S.L.; Gopchandran, K.G.; Ravindran, T.R.; Prasad, V.S. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 2011, 22, 265705. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J.J.L. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Guo, L.; Kim, D.H. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir 2010, 26, 12433–12442. [Google Scholar] [CrossRef]
- Gutiérrez, M.V.; Scarpettini, A.F. Kinetic and plasmonic properties of gold nanorods adsorbed on glass substrates. Colloid Interface Sci. Commun. 2019, 33, 100213. [Google Scholar] [CrossRef]
- Ben Haddada, M.; Blanchard, J.; Casale, S.; Krafft, J.-M.; Vallée, A.; Méthivier, C.; Boujday, S. Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: Amine- vs. thiol-terminated silane. Gold Bulletin 2013, 46, 335–341. [Google Scholar] [CrossRef]
- Habteyes, T.G.; Dhuey, S.; Wood, E.; Gargas, D.; Cabrini, S.; Schuck, P.J.; Alivisatos, A.P.; Leone, S.R. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Cheng, S.F.; Chau, L.K.; Wang, C.R. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens. Bioelectron. 2007, 22, 926–932. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, P.; Yang, C.; Gong, J.; Liang, R.; Ou, Q.; Zhang, S. Gold-nanorod-coated capillaries for the SERS-based detection of thiram. ACS Appl. Nano Mater. 2019, 2, 598–606. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Hwang, Y.; Ibrahim, M.S.B.; Anand, S.; Kim, A.; Jackman, J.A.; Cho, N.-J. Ultrahigh surface sensitivity of deposited gold nanorod arrays for nanoplasmonic biosensing. Appl. Mater. Today 2021, 23, 101046. [Google Scholar] [CrossRef]
- Zhang, F.; Sautter, K.; Larsen, A.M.; Findley, D.A.; Davis, R.C.; Samha, H.; Linford, M.R. Chemical vapor deposition of three aminosilanes on silicon dioxide: Surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. Langmuir 2010, 26, 14648–14654. [Google Scholar] [CrossRef]
- Howarter, J.A.; Youngblood, J.P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, G.; Gao, Y.; An, Y. Surface wettability of (3-aminopropyl) triethoxysilane self-assembled monolayers. J. Phys. Chem. B 2011, 115, 450–454. [Google Scholar] [CrossRef]
- Kim, J.; Holinga, G.J.; Somorjai, G.A. Curing induced structural reorganization and enhanced reactivity of amino-terminated organic thin films on solid substrates: Observations of two types of chemically and structurally unique amino groups on the surface. Langmuir 2011, 27, 5171–5175. [Google Scholar] [CrossRef]
- Tanaka, M.; Sawaguchi, T.; Kuwahara, M.; Niwa, O. Surface modification of silicon oxide with trialkoxysilanes toward close-packed monolayer formation. Langmuir 2013, 29, 6361–6368. [Google Scholar] [CrossRef]
- Jackman, J.A.; Rahim Ferhan, A.; Cho, N.J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, L.; Bjerneld, E.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78, 802–804. [Google Scholar] [CrossRef]
- Osberg, K.D.; Harris, N.; Ozel, T.; Ku, J.C.; Schatz, G.C.; Mirkin, C.A. Systematic study of antibonding modes in gold nanorod dimers and trimers. Nano Lett. 2014, 14, 6949–6954. [Google Scholar] [CrossRef] [PubMed]
- Tabor, C.; Van Haute, D.; El-Sayed, M.A. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano 2009, 3, 3670–3678. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, L.S.; Wu, Y.; Willingham, B.A.; Nordlander, P.; Link, S. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS Nano 2010, 4, 4657–4666. [Google Scholar] [CrossRef]
- Fu, R.; Gomez, D.E.; Shi, Q.; Yap, L.W.; Lyu, Q.; Wang, K.; Yong, Z.; Cheng, W. Orientation-dependent soft plasmonics of gold nanobipyramid plasmene nanosheets. Nano Lett. 2021, 21, 389–396. [Google Scholar] [CrossRef]
- Funston, A.M.; Novo, C.; Davis, T.J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658. [Google Scholar] [CrossRef]
- Kumar, J.; Wei, X.; Barrow, S.; Funston, A.M.; Thomas, K.G.; Mulvaney, P. Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys. Chem. Chem. Phys. 2013, 15, 4258–4264. [Google Scholar] [CrossRef]
- Martinsson, E.; Sepulveda, B.; Chen, P.; Elfwing, A.; Liedberg, B.; Aili, D. Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics 2014, 9, 773–780. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Chen, C.; Li, Y.; Verellen, N.; Moshchalkov, V.V.; Lagae, L.; Van Dorpe, P. Revisiting the surface sensitivity of nanoplasmonic biosensors. ACS Photonics 2015, 2, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Jackman, J.A.; Ferhan, A.R.; Yoon, B.K.; Park, J.H.; Zhdanov, V.P.; Cho, N.-J. Indirect nanoplasmonic sensing platform for monitoring temperature-dependent protein adsorption. Anal. Chem. 2017, 89, 12976–12983. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Joshi, P.; Shanker, V.; Ansari, Z.; Singh, S.P.; Chakrabarti, P. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 2011, 27, 7722–7731. [Google Scholar] [CrossRef]
- Landoulsi, J.; Dupres, V. Direct AFM force mapping of surface nanoscale organization and protein adsorption on an aluminum substrate. Phys. Chem. Chem. Phys. 2013, 15, 8429–8440. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Hernández, M.; Daza, R.; Pérez-Rigueiro, J.; Elices, M.; Nieto-Márquez, J.; Guinea, G.V. Optimization of functionalization conditions for protein analysis by AFM. Appl. Surf. Sci. 2014, 317, 462–468. [Google Scholar] [CrossRef]
- Acuña-Nelson, S.-M.; Bastías-Montes, J.-M.; Cerda-Leal, F.-R.; Parra-Flores, J.-E.; Aguirre-García, J.-S.; Toledo, P.G. Nanocoatings of bovine serum albumin on glass: Effects of pH and temperature. J. Nanomater. 2020, 2020, 8640818. [Google Scholar] [CrossRef]
- Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2009, 21, 055103. [Google Scholar] [CrossRef]
- Mazzotta, F.; Johnson, T.W.; Dahlin, A.B.; Shaver, J.; Oh, S.-H.; Hook, F. Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes. Acs Photonics 2015, 2, 256–262. [Google Scholar] [CrossRef]
- Jackman, J.A.; Linardy, E.; Yoo, D.; Seo, J.; Ng, W.B.; Klemme, D.J.; Wittenberg, N.J.; Oh, S.H.; Cho, N.J. Plasmonic nanohole sensor for capturing single virus-like particles toward virucidal drug evaluation. Small 2016, 12, 1159–1166. [Google Scholar] [CrossRef]
- Scaletti, F.; Feis, A.; Centi, S.; Pini, R.; Rotello, V.M.; Messori, L. Tuning the interactions of PEG-coated gold nanorods with BSA and model proteins through insertion of amino or carboxylate groups. J. Inorg. Biochem. 2015, 150, 120–125. [Google Scholar] [CrossRef]
- Peixoto, L.P.F.; Santos, J.F.; Andrade, G.F. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations. Anal. Chim. Acta 2019, 1084, 71–77. [Google Scholar] [CrossRef]
- Nehl, C.; Liao, H.; Hafner, J. Plasmon resonant molecular sensing with single gold nanostars. Proc. SPIE–Int. Soc. Opt. Eng. 2006, 6323, 63230G-1–63230G-8. [Google Scholar]
- Chen, S.; Svedendahl, M.; Käll, M.; Gunnarsson, L.; Dmitriev, A. Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology 2009, 20, 434015. [Google Scholar] [CrossRef] [PubMed]
- Thilsted, A.H.; Pan, J.Y.; Wu, K.; Zór, K.; Rindzevicius, T.; Schmidt, M.S.; Boisen, A. Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing. Small 2016, 12, 6745–6752. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Yang, J. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 2014, 6, 8836–8843. [Google Scholar] [CrossRef]
- Kreuzer, M.P.; Quidant, R.; Salvador, J.; Marco, M.; Badenes, G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal. Bioanal. Chem. 2008, 391, 1813–1820. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, Y.; Jiang, J.; Zhang, Q.; Yao, Y.; Wang, P.; Chen, B.; Cheng, Q.; Liu, G.L.; Liu, Q. Nanoplasmonic biosensor: Coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens. Bioelectron. 2015, 67, 237–242. [Google Scholar] [CrossRef]
- Kumari, S.; Moirangthem, R.S. Portable and economical plasmonic capillary sensor for biomolecular detection. Sens. Actuators B Chem. 2016, 231, 203–210. [Google Scholar] [CrossRef]
- Becker, J.; Trügler, A.; Jakab, A.; Hohenester, U.; Sönnichsen, C. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 2010, 5, 161–167. [Google Scholar] [CrossRef]
- Lee, K.-S.; El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar] [CrossRef]
- Petronella, F.; De Biase, D.; Zaccagnini, F.; Verrina, V.; Lim, S.-I.; Jeong, K.-U.; Miglietta, S.; Petrozza, V.; Scognamiglio, V.; Godman, N.P. Label-free and reusable antibody-functionalized gold nanorod arrays for the rapid detection of Escherichia coli cells in a water dispersion. Environ. Sci.: Nano 2022, 9, 3343–3360. [Google Scholar] [CrossRef]
- Placido, T.; Fanizza, E.; Cosma, P.; Striccoli, M.; Curri, M.L.; Comparelli, R.; Agostiano, A. Electroactive layer-by-layer plasmonic architectures based on au nanorods. Langmuir 2014, 30, 2608–2618. [Google Scholar] [CrossRef] [PubMed]
- Chuang, E.-Y.; Lin, P.-Y.; Wang, P.-F.; Kuo, T.-R.; Chen, C.-H.; Manga, Y.B.; Hsiao, Y.-C. Label-free, smartphone-based, and sensitive nano-structural liquid crystal aligned by ceramic silicon compound–constructed DMOAP-based biosensor for the detection of urine albumin. Int. J. Nanomed. 2021, 16, 763. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.-T.; Lee, Y.-H.; Chuang, E.-Y.; Hsiao, Y.-C. Sensitive, color-indicating and labeling-free multi-detection cholesteric liquid crystal biosensing chips for detecting albumin. Polymers 2021, 13, 1463. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Sumana, G.; Marquette, C.A. Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B1 detection. Talanta 2021, 222, 121578. [Google Scholar] [CrossRef]
- Trung, N.B.; Yoshikawa, H.; Tamiya, E.; Viet, P.H.; Takamura, Y.; Ashahi, T. Propitious immobilization of gold nanoparticles on poly (dimethylsiloxane) substrate for local surface plasmon resonance based biosensor. Jpn. J. Appl. Phys. 2012, 51, 037001. [Google Scholar] [CrossRef]
- Kyaw, H.H.; Al-Harthi, S.H.; Sellai, A.; Dutta, J. Self-organization of gold nanoparticles on silanated surfaces. Beilstein J. Nanotechnol. 2015, 6, 2345–2353. [Google Scholar] [CrossRef]
- Zhu, S.L.; Zhang, J.B.; Yue, L.Y.L.; Hartono, D.; Liu, A.Q. Label-free protein detection via gold nanoparticles and localized surface plasmon resonance. Adv. Mat. Res. 2009, 74, 95–98. [Google Scholar] [CrossRef]
- Calatayud-Sanchez, A.; Ortega-Gomez, A.; Barroso, J.; Zubia, J.; Benito-Lopez, F.; Villatoro, J.; Basabe-Desmonts, L. A method for the controllable fabrication of optical fiber-based localized surface plasmon resonance sensors. Sci. Rep. 2022, 12, 9566. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Chen, D.; Hu, W. Stabilization of gold nanoparticles on glass surface with polydopamine thin film for reliable LSPR sensing. J. Colloid Interface Sci. 2015, 460, 258–263. [Google Scholar] [CrossRef]
- Golmohammadi, S.; Etemadi, M. Analysis of plasmonic gold nanostar arrays with the optimum sers enhancement factor on the human skin tissue. J. Appl. Spectrosc. 2019, 86, 925–933. [Google Scholar] [CrossRef]
- Kooij, E.S.; Brouwer, E.M.; Wormeester, H.; Poelsema, B. Ionic strength mediated self-organization of gold nanocrystals: An AFM study. Langmuir 2002, 18, 7677–7682. [Google Scholar] [CrossRef]
- Kim, Y.-P.; Oh, E.; Hong, M.-Y.; Lee, D.; Han, M.-K.; Shon, H.K.; Moon, D.W.; Kim, H.-S.; Lee, T.G. Gold nanoparticle-enhanced secondary ion mass spectrometry imaging of peptides on self-assembled monolayers. Anal. Chem. 2006, 78, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Nath, N.; Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 2002, 74, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Tunc, I.; Susapto, H.H. Label-free detection of ovarian cancer antigen CA125 by surface enhanced Raman scattering. J. Nanosci. Nanotechnol. 2020, 20, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.; Koo, D.J.; Ferhan, A.R.; Sut, T.N.; Yoon, B.K.; Cho, N.-J.; Jackman, J.A. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. Nanomaterials 2022, 12, 3432. https://doi.org/10.3390/nano12193432
Hwang Y, Koo DJ, Ferhan AR, Sut TN, Yoon BK, Cho N-J, Jackman JA. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. Nanomaterials. 2022; 12(19):3432. https://doi.org/10.3390/nano12193432
Chicago/Turabian StyleHwang, Youngkyu, Dong Jun Koo, Abdul Rahim Ferhan, Tun Naw Sut, Bo Kyeong Yoon, Nam-Joon Cho, and Joshua A. Jackman. 2022. "Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing" Nanomaterials 12, no. 19: 3432. https://doi.org/10.3390/nano12193432
APA StyleHwang, Y., Koo, D. J., Ferhan, A. R., Sut, T. N., Yoon, B. K., Cho, N. -J., & Jackman, J. A. (2022). Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. Nanomaterials, 12(19), 3432. https://doi.org/10.3390/nano12193432