Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NiOx and Perovskite Precursor Solutions
2.3. Device Fabrication
2.4. Characterizations
3. Results and Discussion
3.1. Effect of Organic Cation Content on Performance of Quasi-2D PeLEDs
3.2. Optimization of Annealing Temperature for Quasi-2D Perovskite EMLs
3.3. Phase Distribution of Quasi-2D Perovskite EMLs
3.4. Crystallographic Characteristics of Quasi-2D Perovskite EMLs
3.5. Carrier Dynamics in Quasi-2D Perovskite EMLs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Li, Z.; Hopper, T.R.; Bakulin, A.A.; Yip, H.-L. Materials, Photophysics and Device Engineering of Perovskite Light-Emitting Diodes. Rep. Prog. Phys. 2021, 84, 046401. [Google Scholar] [CrossRef]
- Ji, K.; Anaya, M.; Abfalterer, A.; Stranks, S.D. Halide Perovskite Light-Emitting Diode Technologies. Adv. Opt. Mater. 2021, 9, 2002128. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite Light-Emitting Diodes Based on Spontaneously Formed Submicrometre-Scale Structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef]
- Schünemann, S.; Brittman, S.; Chen, K.; Garnett, E.C.; Tüysüz, H. Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers. ACS Photonics 2017, 4, 2522–2528. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Liang, C.; Liu, H.; Liang, J.; Zhao, Y.; Zhang, W.; Sun, M.; Xiao, W.; Li, H.; et al. Organic-Inorganic Perovskite Light-Emitting Electrochemical Cells with a Large Capacitance. Adv. Funct. Mater. 2015, 25, 7226–7232. [Google Scholar] [CrossRef] [Green Version]
- Todorović, P.; Ma, D.; Chen, B.; Quintero-Bermudez, R.; Saidaminov, M.I.; Dong, Y.; Lu, Z.-H.; Sargent, E.H. Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr3 Nanocrystals. Adv. Opt. Mater. 2019, 7, 1901440. [Google Scholar] [CrossRef]
- Ding, W.; Liu, H.; Zhang, S.; Qiu, D.; Li, X.; Wang, S. Transformation of Quasi-2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Light-Emitting Diodes. Adv. Funct. Mater. 2022, 32, 2105164. [Google Scholar] [CrossRef]
- Zhu, L.; Cao, H.; Xue, C.; Zhang, H.; Qin, M.; Wang, J.; Wen, K.; Fu, Z.; Jiang, T.; Xu, L.; et al. Unveiling the Additive-Assisted Oriented Growth of Perovskite Crystallite for High Performance Light-Emitting Diodes. Nat. Commun. 2021, 12, 5081–5088. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Yuan, F.; Dong, Y.; Li, J.Y.; Johnston, A.; Chen, B.; Saidaminov, M.I.; Zhou, C.; Zheng, X.; Hou, Y.; et al. All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angew. Chem. Int. Ed. 2021, 60, 16164–16170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiu, W.; Peng, X.; Sun, G.; Liu, X.; Liu, D.; Li, Z.; He, F.; Shen, C.; Gu, Q.; et al. Perovskite Light-Emitting Diodes with EQE Exceeding 28% through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation. Adv. Mater. 2021, 33, 2103268. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, H.Y.; Li, Y.Q.; Shen, K.C.; Gao, X.; Song, F.; Tang, J.X. Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2021, 31, 2103870. [Google Scholar] [CrossRef]
- Yuan, M.; Quan, L.N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E.M.; Kanjanaboos, P.; et al. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016, 11, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Wu, B.; Wu, X.; Li, M.; Du, B.; Wei, Q.; Guo, J.; Yeow, E.K.L.; Sum, T.C.; Huang, W. Transcending the Slow Bimolecular Recombination in Lead-Halide Perovskites for Electroluminescence. Nat. Commun. 2017, 8, 14558–14566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Zhang, Y.; Wang, B.; Wang, L.; Zhou, N.; Qiu, Z.; Li, N.; Chen, Y.; Zhu, C.; Xie, H.; et al. Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasi-2D Perovskites for Efficient Green Light-Emitting Diodes. Adv. Mater. 2021, 33, 2102246. [Google Scholar] [CrossRef]
- Jiang, Y.; Cui, M.; Li, S.; Sun, C.; Huang, Y.; Wei, J.; Zhang, L.; Lv, M.; Qin, C.; Liu, Y.; et al. Reducing the Impact of Auger Recombination in Quasi-2D Perovskite Light-Emitting Diodes. Nat. Commun. 2021, 12, 336–345. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Zhang, R.; Liu, W.; Zhang, Q.; Guo, R.; Zhuang, S.; Wang, L. Sodium Ion Modifying In Situ Fabricated CsPbBr3 Nanoparticles for Efficient Perovskite Light Emitting Diodes. Adv. Opt. Mater. 2019, 7, 1900747. [Google Scholar] [CrossRef]
- Hu, J.; Oswald, I.W.H.H.; Stuard, S.J.; Nahid, M.M.; Zhou, N.; Williams, O.F.; Guo, Z.; Yan, L.; Hu, H.; Chen, Z.; et al. Synthetic Control over Orientational Degeneracy of Spacer Cations Enhances Solar Cell Efficiency in Two-Dimensional Perovskites. Nat. Commun. 2019, 10, 1276–1286. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Xiong, Q.; Zhang, Z.; Hu, J.; Lin, F.; Liang, L.; Wu, T.; Wang, X.; Wu, J.; Zhang, B.; et al. Fluoroaromatic Cation-Assisted Planar Junction Perovskite Solar Cells with Improved VOC and Stability: The Role of Fluorination Position. Sol. RRL 2020, 4, 2000107. [Google Scholar] [CrossRef]
- Han, B.; Yuan, S.; Fang, T.; Zhang, F.; Shi, Z.; Song, J. Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 14224–14232. [Google Scholar] [CrossRef]
- Meng, F.; Liu, X.; Chen, Y.; Cai, X.; Li, M.; Shi, T.; Chen, Z.; Chen, D.; Yip, H.L.; Ramanan, C.; et al. Co-Interlayer Engineering toward Efficient Green Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30, 1910167. [Google Scholar] [CrossRef]
- Bi, W.; Huang, X.; Tang, Y.; Liu, H.; Jia, P.; Yu, K.; Hu, Y.; Lou, Z.; Teng, F.; Hou, Y. High-Performance Light-Emitting Diode with Poly (ethylene oxide) Passivated Quasi Two Dimensional Perovskite Emitting Layer. Org. Electron. 2018, 63, 216–221. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, B.; Zheng, T.; Luo, X.; Lu, L.; Tian, B.; Xu, P.; Kwok, H.S.; Li, G. High-Efficiency Sky-Blue Perovskite Light-Emitting Diodes via the Trade-Off between the Electron-Phonon Coupling Loss and Defect Passivation. ACS Photonics 2022, 9, 2422–2430. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Z.; Wei, Q.; Wang, B.; Wang, K.; Guo, J.; Liang, C.; Zhao, D.; Chen, S.; Tang, Y.; et al. Tailoring Quasi-2D Perovskite Thin Films via Nanocrystals Mediation for Enhanced Electroluminescence. Chem. Eng. J. 2021, 411, 128511–128517. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Wang, B.; Li, J.; Li, D.; Wang, G.; Lian, Q.; Amini, A.; Chen, S.; Cheng, C.; et al. Antisolvent Engineering to Optimize Grain Crystallinity and Hole-Blocking Capability of Perovskite Films for High-Performance Photovoltaics. Adv. Mater. 2021, 33, 2102816. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chen, W.; Shi, Y.; Zhao, J.; Chu, S.; Zhang, J.; Xiao, Z. Dual Passivation of Perovskite Defects for Light-Emitting Diodes with External Quantum Efficiency Exceeding 20%. Adv. Funct. Mater. 2020, 30, 1909754. [Google Scholar] [CrossRef]
- Qin, C.; Matsushima, T.; Potscavage, W.J.; Sandanayaka, A.S.D.D.; Leyden, M.R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G.; et al. Triplet Management for Efficient Perovskite Light-Emitting Diodes. Nat. Photonics 2020, 14, 70–75. [Google Scholar] [CrossRef]
- Kitazawa, N. Excitons in Two-Dimensional Layered Perovskite Compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Mater. Sci. Eng. B 1997, 49, 233–238. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, D.; Pang, P.; Ye, Z.; Liu, T.; Xing, G.; Chen, J.; Ma, D. Boosting the Performance of CsPbBr3 -Based Perovskite Light-Emitting Diodes via Constructing Nanocomposite Emissive Layers. J. Mater. Chem. C 2021, 9, 916–924. [Google Scholar] [CrossRef]
- Jin, G.; Liu, T.; Li, Y.; Zhou, J.; Zhang, D.; Pang, P.; Ye, Z.; Xing, Z.; Xing, G.; Chen, J.; et al. Low-Dimensional Phase Suppression and Defect Passivation of Quasi-2D Perovskites for Efficient Electroluminescence and Low-Threshold Amplified Spontaneous Emission. Nanoscale 2022, 14, 919–929. [Google Scholar] [CrossRef]
- Pang, P.; Jin, G.; Liang, C.; Wang, B.; Xiang, W.; Zhang, D.; Xu, J.; Hong, W.; Xiao, Z.; Wang, L.; et al. Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano 2020, 14, 11420–11430. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Tan, Y.; Yang, M.; Jiang, Y.; Lei, B.-X.; Wang, L.; Wu, W.-Q. Small Amines Bring Big Benefits to Perovskite-Based Solar Cells and Light-Emitting Diodes. Chem 2022, 8, 351–383. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Rakstys, K.; Mahata, A.; Franckevicius, M.; Mosconi, E.; Skackauskaite, R.; Ding, B.; Brooks, K.G.; Usiobo, O.J.; et al. Tuning Structural Isomers of Phenylenediammonium to Afford Efficient and Stable Perovskite Solar Cells and Modules. Nat. Commun. 2021, 12, 6394–6402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Nakajima, T.; Cao, H.; Sun, Q.; Ban, H.; Pan, H.; Yu, H.; Zhang, Z.; Zhang, X.; Shen, Y.; et al. Controlling Quantum-Well Width Distribution and Crystal Orientation in Two-Dimensional Tin Halide Perovskites via a Strong Interlayer Electrostatic Interaction. ACS Appl. Mater. Interfaces 2021, 13, 49907–49915. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sabatini, R.P.; Zhu, T.; Wang, S.; Morteza Najjarian, A.; Johnston, A.; Lough, A.J.; Hoogland, S.; Sargent, E.H.; Seferos, D.S. Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites. J. Am. Chem. Soc. 2021, 143, 19901–19908. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Zhao, X.; Gong, X.; Shen, Y.; Wang, M. Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden-Popper Perovskite Compounds. J. Phys. Chem. Lett. 2019, 10, 1813–1819. [Google Scholar] [CrossRef]
- Jiang, T.; Min, H.; Zou, R.; Wang, M.; Wen, K.; Lai, J.; Xu, L.; Wang, Y.; Xu, W.; Wang, C.; et al. Molecularly Controlled Quantum Well Width Distribution and Optoelectronic Properties in Quasi-2D Perovskite Light-Emitting Diodes. J. Phys. Chem. Lett. 2022, 13, 4098–4103. [Google Scholar] [CrossRef]
- Manders, J.R.; Tsang, S.-W.; Hartel, M.J.; Lai, T.-H.; Chen, S.; Amb, C.M.; Reynolds, J.R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001. [Google Scholar] [CrossRef]
- Lin, H.-K.; Li, J.-X.; Wang, H.-C.; Su, Y.-W.; Wu, K.-H.; Wei, K.-H. Dual Nanocomposite Carrier Transport Layers Enhance the Efficiency of Planar Perovskite Photovoltaics. RSC Adv. 2018, 8, 12526–12534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J.H.; Sadhanala, A.; Myoung, N.; Yoo, S.; et al. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350, 1222–1225. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y.M.; Wei, M.; Sutherland, B.R.; et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Gao, Q.; Liu, P.; Liao, Q.; Zhang, H.; Yao, J.; Hu, W.; Wu, Y.; Fu, H. Amplified Spontaneous Emission Based on 2D Ruddlesden-Popper Perovskites. Adv. Funct. Mater. 2018, 28, 1707006. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Rademeyer, M. 2-Phenylethylammonium Bromide. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, o221–o223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Xia, J.; Zhang, D.; Duan, X.; Xing, Z.; Jin, G.; Cai, Y.; Xing, G.; Chen, J.; Ma, D. Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. Nanomaterials 2022, 12, 3495. https://doi.org/10.3390/nano12193495
Ye Z, Xia J, Zhang D, Duan X, Xing Z, Jin G, Cai Y, Xing G, Chen J, Ma D. Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. Nanomaterials. 2022; 12(19):3495. https://doi.org/10.3390/nano12193495
Chicago/Turabian StyleYe, Ziqing, Junmin Xia, Dengliang Zhang, Xingxing Duan, Zhaohui Xing, Guangrong Jin, Yongqing Cai, Guichuan Xing, Jiangshan Chen, and Dongge Ma. 2022. "Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation" Nanomaterials 12, no. 19: 3495. https://doi.org/10.3390/nano12193495
APA StyleYe, Z., Xia, J., Zhang, D., Duan, X., Xing, Z., Jin, G., Cai, Y., Xing, G., Chen, J., & Ma, D. (2022). Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. Nanomaterials, 12(19), 3495. https://doi.org/10.3390/nano12193495