Optimization of the Sb2S3 Shell Thickness in ZnO Nanowire-Based Extremely Thin Absorber Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Optical Properties
3.2. Photovoltaic Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement:
Data Availability Statement
Conflicts of Interest
References
- Schmidt-Mende, L.; MacManus-Driscoll, J.L. ZnO—Nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098. [Google Scholar] [CrossRef] [Green Version]
- Consonni, V.; Briscoe, J.; Karber, E.; Li, X.; Cossuet, T. ZnO nanowires for solar cells: A comprehensive review. Nanotechnology 2019, 30, 362001. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, B.; Schwartz, D.T.; Zakeeruddin, S.M.; Gratzel, M. Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 2000, 12, 1263–1267. [Google Scholar] [CrossRef]
- Mora-Sero, I.; Bisquert, J. Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells. J. Phys. Chem. Lett. 2010, 1, 3046–3052. [Google Scholar] [CrossRef]
- Dittrich, T.; Belaidi, A.; Ennaoui, A. Concepts of inorganic solid-state nanostructured solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1527–1536. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Extremely thin absorber solar cells based on nanostructured semiconductors. Mater. Sci. Technol. 2011, 27, 1741–1756. [Google Scholar] [CrossRef]
- Hodes, G.; Cahen, D. All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Acc. Chem. Res. 2012, 45, 705–713. [Google Scholar] [CrossRef]
- Taretto, K.; Rau, U. Modeling extremely thin absorber solar cells for optimized design. Prog. Photovolt. 2004, 12, 573–591. [Google Scholar] [CrossRef]
- Mora-Sero, I.; Gimenez, S.; Fabregat-Santiago, F.; Azaceta, E.; Tena-Zaera, R.; Bisquert, J. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Phys. Chem. Chem. Phys. 2011, 13, 7162–7169. [Google Scholar] [CrossRef]
- Michallon, J.; Bucci, D.; Morand, A.; Zanuccoli, M.; Consonni, V.; Kaminski-Cachopo, A. Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells. Opt. Express 2014, 22, A1174–A1189. [Google Scholar] [CrossRef] [Green Version]
- Michallon, J.; Bucci, D.; Morand, A.; Zanuccoli, M.; Consonni, V.; Kaminski-Cachopo, A. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells. Nanotechnology 2015, 26, 075401. [Google Scholar] [CrossRef]
- Levy-Clement, C.; Tena-Zaera, R.; Ryan, M.A.; Katty, A.; Hodes, G. CdSe-Sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17, 1512–1515. [Google Scholar] [CrossRef]
- Levy-Clement, C.; Katty, A.; Bastide, S.; Zenia, F.; Mora, I.; Munoz-Sanjose, V. A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E 2002, 14, 229–232. [Google Scholar] [CrossRef]
- Consonni, V.; Renet, S.; Garnier, J.; Gergaud, P.; Artus, L.; Michallon, J.; Rapenne, L.; Appert, E.; Kaminski-Cachopo, A. Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells. Nanoscale Res. Lett. 2014, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Akbarnejad, E.; Nayeri, F.D.; Ghoranneviss, M. Core-shell solar cell fabrication using heterostructure of ZnO-nanowires arrays decorated with sputtered CdTe-nanoparticles. J. Phys. D -Appl. Phys. 2018, 51, 7. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.; Wang, H.K.; Chen, X.; Luan, C.Y.; Xu, Z.X.; Lu, Z.Z.; Roy, V.A.L.; Zhang, W.J.; Lee, C.S. Arrays of ZnO/ZnxCd1-xSe Nanocables: Band Gap Engineering and Photovoltaic Applications. Nano Lett. 2011, 11, 4138–4143. [Google Scholar] [CrossRef]
- Levy-Clement, C.; Elias, J. Optimization of the Design of Extremely Thin Absorber Solar Cells Based on Electrodeposited ZnO Nanowires. ChemPhysChem 2013, 14, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.; Hong, S.J.; Lee, J.S.; Yong, K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19, 5945–5951. [Google Scholar] [CrossRef] [Green Version]
- Kartopu, G.; Turkay, D.; Ozcan, C.; Hadibrata, W.; Aurang, P.; Yerci, S.; Unalan, H.E.; Barrioz, V.; Qu, Y.; Bowen, L.; et al. Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays. Sol. Energy Mater. Sol. Cells 2018, 176, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, T.; Kieven, D.; Rusu, M.; Belaidi, A.; Tornow, J.; Schwarzburg, K.; Lux-Steiner, M. Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3/CuSCN. Appl. Phys. Lett. 2008, 93, 053113. [Google Scholar] [CrossRef]
- Belaidi, A.; Dittrich, T.; Kieven, D.; Tornow, J.; Schwarzburg, K.; Lux-Steiner, M. Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells. Phys. Status Solidi-Rapid Res. Lett. 2008, 2, 172–174. [Google Scholar] [CrossRef]
- Belaidi, A.; Dittrich, T.; Kieven, D.; Tornow, J.; Schwarzburg, K.; Kunst, M.; Allsop, N.; Lux-Steiner, M.C.; Gavrilov, S. ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber. Sol. Energy Mater. Sol. Cells 2009, 93, 1033–1036. [Google Scholar] [CrossRef]
- Krunks, M.; Katerski, A.; Dedova, T.; Acik, I.O.; Mere, A. Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Sol. Energy Mater. Sol. Cells 2008, 92, 1016–1019. [Google Scholar] [CrossRef]
- Krunks, M.; Karber, E.; Katerski, A.; Otto, K.; Acik, I.O.; Dedova, T.; Mere, A. Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol. Energy Mater. Sol. Cells 2010, 94, 1191–1195. [Google Scholar] [CrossRef]
- Izaki, M.; Ohta, T.; Kondo, M.; Takahashi, T.; Mohamad, F.B.; Zamzuri, M.; Sasano, J.; Shinagawa, T.; Pauporte, T. Electrodeposited ZnO-Nanowire/Cu2O Photovoltaic Device with Highly Resistive ZnO Intermediate Layer. ACS Appl. Mater. Interfaces 2014, 6, 13461–13469. [Google Scholar] [CrossRef]
- Chen, X.; Lin, P.; Yan, X.Q.; Bai, Z.M.; Yuan, H.G.; Shen, Y.W.; Liu, Y.C.; Zhang, G.J.; Zhang, Z.; Zhang, Y. Three-Dimensional Ordered ZnO/Cu2O Nanoheterojunctions for Efficient Metal-Oxide Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 3216–3223. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.M.; Zheng, J.J.; Lin, X.A.; Zhan, H.H.; Li, S.P.; Kang, J.Y.; Bleuse, J.; Mariette, H. ZnO/ZnSe type II core-shell nanowire array solar cell. Sol. Energy Mater. Sol. Cells 2012, 102, 15–18. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.J.; Zeng, Z.M.; Tarr, J.; Zhou, W.L.; Zhang, Y.; Yan, Y.F.; Jiang, C.S.; Pern, J.; Mascarenhas, A. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays. Appl. Phys. Lett. 2010, 96, 123105. [Google Scholar] [CrossRef] [Green Version]
- Savadogo, O.; Mandal, K.C. Studies on new chemically deposited photoconducting antimony trisulfide thin-films. Sol. Energy Mater. Sol. Cells 1992, 26, 117–136. [Google Scholar] [CrossRef]
- Savadogo, O.; Mandal, K.C. Characterizations of antimony trisulfide chemically deposited with silicotungstic acid. J. Electrochem. Soc. 1992, 139, L16–L18. [Google Scholar] [CrossRef]
- Nair, M.T.S.; Pena, Y.; Campos, J.; Garcia, V.M.; Nair, P.K. Chemically deposited Sb2S3 and Sb2S3-CuS thin films. J. Electrochem. Soc. 1998, 145, 2113–2120. [Google Scholar] [CrossRef]
- Ben Nasr, T.; Maghraoui-Meherzi, H.; Ben Abdallah, H.; Bennaceur, R. Electronic structure and optical properties of Sb2S3 crystal. Physica B 2011, 406, 287–292. [Google Scholar] [CrossRef]
- Kondrotas, R.; Chen, C.; Tang, J. Sb2S3 Solar Cells. Joule 2018, 2, 857–878. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chen, Z.; Wang, J.; Xu, Y.; Wei, Y.; Wei, Y.; Qiu, L.; Lu, H.; Ding, Y.; Zhu, J. Sb2S3 solar cells: Functional layer preparation and device performance. Inorg. Chem. Front. 2019, 6, 3381–3397. [Google Scholar] [CrossRef]
- Shah, U.A.; Chen, S.; Khalaf, G.M.G.; Jin, Z.; Song, H. Wide Bandgap Sb2S3 Solar Cells. Adv. Funct. Mater. 2021, 31, 2100265. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, D.U.; Noh, J.H.; Kim, E.K.; Seok, S.I. Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. Adv. Funct. Mater. 2014, 24, 3587–3592. [Google Scholar] [CrossRef]
- Itzhaik, Y.; Niitsoo, O.; Page, M.; Hodes, G. Sb2S3-Sensitized Nanoporous TiO2 Solar Cells. J. Phys. Chem. C 2009, 113, 4254–4256. [Google Scholar] [CrossRef]
- Moon, S.J.; Itzhaik, Y.; Yum, J.H.; Zakeeruddin, S.M.; Hodes, G.; Gratzel, M. Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor. J. Phys. Chem. Lett. 2010, 1, 1524–1527. [Google Scholar] [CrossRef]
- Chang, J.A.; Rhee, J.H.; Im, S.H.; Lee, Y.H.; Kim, H.J.; Seok, S.I.; Nazeeruddin, M.K.; Gratzel, M. High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells. Nano Lett. 2010, 10, 2609–2612. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Lim, C.S.; Chang, J.A.; Lee, Y.H.; Maiti, N.; Kim, H.J.; Nazeeruddin, M.K.; Gratzel, M.; Seok, S.I. Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells. Nano Lett. 2011, 11, 4789–4793. [Google Scholar] [CrossRef]
- Chang, J.A.; Im, S.H.; Lee, Y.H.; Kim, H.J.; Lim, C.S.; Heo, J.H.; Seok, S.I. Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic-Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels. Nano Lett. 2012, 12, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Liu, Y.; Wang, Z.; Zhang, Y. Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects. Nano Sel. 2021, 2, 1818–1848. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Chen, G.; Yao, L.; Huang, X.; Chen, T.; Zhu, C.; Chen, S.; Huang, Z.; Zhang, Y. Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization. Adv. Electron. Mater. 2019, 5, 1800683. [Google Scholar] [CrossRef]
- Hu, X.; Tao, J.; Wang, R.; Wang, Y.; Pan, Y.; Weng, G.; Luo, X.; Chen, S.; Zhu, Z.; Chu, J.; et al. Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source. J. Power Sources 2021, 493, 229737. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.J.; Zheng, Y.J.; Zheng, M.; Wen, M.J.; Wu, S.J.; Gao, J.W.; Gao, X.S.; Liu, J.M.; Zhao, H.B. High Efficiency Solar Cells as Fabricated by Sb2S3-Modified TiO2 Nanofibrous Networks. ACS Appl. Mater. Interfaces 2013, 5, 8345–8350. [Google Scholar] [CrossRef]
- Sharma, V.; Das, T.K.; Ilaiyaraja, P.; Dakshinamurthy, A.C.; Sudakar, C. Growth of Sb2S3 semiconductor thin film on different morphologies of TiO2 nanostructures. Mater. Res. Bull. 2020, 131, 110980. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Grimes, C.A.; Feng, X.J.; Zhang, X.Y.; Komarneni, S.; Zanoni, M.V.B.; Bao, N.Z. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic- inorganic thin film photovoltaics. Chem. Commun. 2012, 48, 2818–2820. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Q.; Wang, X.Z.; Zhong, M.Z.; Wu, F.M.; Fang, Y.Z. Sb2S3 surface modification induced remarkable enhancement of TiO2 core/shell nanowries solar cells. J. Solid State Chem. 2013, 201, 75–78. [Google Scholar] [CrossRef]
- Ying, C.; Shi, C.; Lv, K.; Ma, C.; Guo, F.; Fu, H. Fabrication of Sb2S3 sensitized TiO2 nanorod array solar cells using spin-coating assisted successive ionic layer absorption and reaction. Mater. Today Commun. 2019, 19, 393–395. [Google Scholar] [CrossRef]
- Ying, C.; Guo, F.; Wu, Z.; Lv, K.; Shi, C. Influence of Surface Modifier Molecular Structures on the Photovoltaic Performance of Sb2S3-Sensitized TiO2 Nanorod Array Solar Cells. Energy Technol. 2020, 8, 1901368. [Google Scholar] [CrossRef]
- Liu, C.P.; Chen, Z.H.; Wang, H.E.; Jha, S.K.; Zhang, W.J.; Bello, I.; Zapien, J.A. Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells. Appl. Phys. Lett. 2012, 100, 243102. [Google Scholar] [CrossRef]
- Han, J.H.; Liu, Z.F.; Zheng, X.R.; Guo, K.Y.; Zhang, X.Q.; Hong, T.T.; Wang, B.; Liu, J.Q. Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic-organic hybrid solar cells. RSC Adv. 2014, 4, 23807–23814. [Google Scholar] [CrossRef]
- Parize, R.; Katerski, A.; Gromyko, I.; Rapenne, L.; Roussel, H.; Karber, E.; Appert, E.; Krunks, M.; Consonni, V. ZnO/TiO2/Sb2S3 Core-Shell Nanowire Heterostructure for Extremely Thin Absorber Solar Cells. J. Phys. Chem. C 2017, 121, 9672–9680. [Google Scholar] [CrossRef]
- Parize, R.; Cossuet, T.; Appert, E.; Chaix-Pluchery, O.; Roussel, H.; Rapenne, L.; Consonni, V. Synthesis and properties of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures using the SILAR technique. CrystEngComm 2018, 20, 4455–4462. [Google Scholar] [CrossRef]
- Sharma, V.; Das, T.K.; Ilaiyaraja, P.; Sudakar, C. Oxygen non-stoichiometry in TiO2 and ZnO nano rods: Effect on the photovoltaic properties of dye and Sb2S3 sensitized solar cells. Sol. Energy 2019, 191, 400–409. [Google Scholar] [CrossRef]
- Sun, Z.; Peng, Z.; Liu, Z.; Chen, J.; Li, W.; Qiu, W.; Chen, J. Band energy modulation on Cu-doped Sb2S3-based photoelectrodes for charge generation and transfer property of quantum dot–sensitized solar cells. J. Nanopart. Res. 2020, 22, 282. [Google Scholar] [CrossRef]
- Li, W.; Peng, Z.; Sun, Z.; Liu, Z.; Chen, J.; Qiu, W.; Chen, J.; Zhang, S. Orientation modulation of ZnO nanorods on charge transfer performance enhancement for Sb2S3 quantum dot sensitized solar cells. J. Alloys Compd. 2020, 816, 152628. [Google Scholar] [CrossRef]
- Peng, Z.; Ning, Z.; Liu, Z.; Chen, J.; Li, W.; Qiu, W.; Chen, J.; Tang, Y. Enhancement on Charge Generation and Transfer Properties of Sb2S3 Quantum-Dot-Sensitized Solar Cells by ZnO Nanorods Optimization. J. Electron. Mater. 2021, 50, 100–107. [Google Scholar] [CrossRef]
- Cossuet, T.; Appert, E.; Chaix-Pluchery, O.; Roussel, H.; Rapenne, L.; Renou, G.; Sauvage, F.; Consonni, V. Epitaxial TiO2 Shell Grown by Atomic Layer Deposition on ZnO Nanowires Using a Double-Step Process and Its Beneficial Passivation Effect. J. Phys. Chem. C 2020, 124, 13447–13455. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, S.-J.; Park, M.S.; Kang, J.-K.; Heo, J.H.; Im, S.H.; Sung, S.-J. Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition. Nanoscale 2014, 6, 14549–14554. [Google Scholar] [CrossRef] [Green Version]
- Eensalu, J.S.; Katerski, A.; Kärber, E.; Oja Acik, I.; Mere, A.; Krunks, M. Uniform Sb2S3 optical coatings by chemical spray method. Beilstein J. Nanotechnol. 2019, 10, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Guillemin, S.; Consonni, V.; Appert, E.; Puyoo, E.; Rapenne, L.; Roussel, H. Critical Nucleation Effects on the Structural Relationship Between ZnO Seed Layer and Nanowires. J. Phys. Chem. C 2012, 116, 25106–25111. [Google Scholar] [CrossRef]
- Guillemin, S.; Appert, E.; Roussel, H.; Doisneau, B.; Parize, R.; Boudou, T.; Bremond, G.; Consonni, V. Controlling the Structural Properties of Single Step, Dip Coated ZnO Seed Layers for Growing Perfectly Aligned Nanowire Arrays. J. Phys. Chem. C 2015, 119, 21694–21703. [Google Scholar] [CrossRef]
- Parize, R.; Garnier, J.; Chaix-Pluchery, O.; Verrier, C.; Appert, E.; Consonni, V. Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. J. Phys. Chem. C 2016, 120, 5242–5250. [Google Scholar] [CrossRef]
- Parize, R.; Cossuet, T.; Chaix-Pluchery, O.; Roussel, H.; Appert, E.; Consonni, V. In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction. Mater. Des. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Thompson, C.V. Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 2000, 30, 159–190. [Google Scholar] [CrossRef]
- Makreski, P.; Petrusevski, G.; Ugarkovic, S.; Jovanovski, G. Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vib. Spectrosc. 2013, 68, 177–182. [Google Scholar] [CrossRef]
- Sereni, P.; Musso, M.; Knoll, P.; Blaha, P.; Schwarz, K.; Schmidt, G. Polarization-Dependent Raman Characterization of Stibnite (Sb2S3). AIP Proc. 2010, 1267, 1131–1132. [Google Scholar] [CrossRef]
- Liu, Y.; Chua, K.T.E.; Sum, T.C.; Gan, C.K. First-principles study of the lattice dynamics of Sb2S3. Phys. Chem. Chem. Phys. 2014, 16, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, J.; Sans, J.A.; Popescu, C.; Lopez-Vidrier, J.; Elvira-Betanzos, J.J.; Cuenca-Gotor, V.P.; Gomis, O.; Manjon, F.J.; Rodriguez-Hernandez, P.; Munoz, A. Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. J. Phys. Chem. C 2016, 120, 10547–10558. [Google Scholar] [CrossRef] [Green Version]
- Karber, E.; Katerski, A.; Acik, I.O.; Mere, A.; Mikli, V.; Krunks, M. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell. Beilstein J. Nanotechnol. 2016, 7, 1662–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, R.; Wang, X.; Jiang, C.; Li, S.; Liu, W.; Ju, H.; Yang, S.; Zhu, C.; Chen, T. n-Type Doping of Sb2S3 Light-Harvesting Films Enabling High-Efficiency Planar Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 30314–30321. [Google Scholar] [CrossRef]
- Zacharias, M.; Streitenberger, P. Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces. Phys. Rev. B 2000, 62, 8391–8396. [Google Scholar] [CrossRef] [Green Version]
- Raoux, S.; Jordan-Sweet, J.L.; Kellock, A.J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 2008, 103, 114310. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Jiao, H.; Bao, G.; Wang, Z.; Cheng, X. Thickness-dependent surface morphology and crystallization of HfO2 coatings prepared with ion-assisted deposition. Thin Solid Films 2017, 642, 359–363. [Google Scholar] [CrossRef]
- Kharbish, S.; Libowitzky, E.; Beran, A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Mineral. 2009, 21, 325–333. [Google Scholar] [CrossRef]
- Mestl, G.; Ruiz, P.; Delmon, B.; Knozinger, H. Sb2O3/Sb2O4 in reducing/oxidizing environments—An In-situ Raman-spectroscopy study. J. Phys. Chem. 1994, 98, 11276–11282. [Google Scholar] [CrossRef]
- Dedova, T.; Krunks, M.; Volobujeva, O.; Oja, I. ZnS thin films deposited by spray pyrolysis technique. Phys. Status Sol. C 2005, 2, 1161–1166. [Google Scholar] [CrossRef]
- Villafuerte, J.; Donatini, F.; Kioseoglou, J.; Sarigiannidou, E.; Chaix-Pluchery, O.; Pernot, J.; Consonni, V. Zinc Vacancy–Hydrogen Complexes as Major Defects in ZnO Nanowires Grown by Chemical Bath Deposition. J. Phys. Chem. C 2020, 124, 16652–16662. [Google Scholar] [CrossRef]
- Meyer, B.K.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Strassburg, M.; Dworzak, M.; et al. Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 2004, 241, 231–260. [Google Scholar] [CrossRef]
- Lavrov, E.V.; Herklotz, F.; Weber, J. Identification of two hydrogen donors in ZnO. Phys. Rev. B 2009, 79, 165210. [Google Scholar] [CrossRef]
- Heinhold, R.; Neiman, A.; Kennedy, J.V.; Markwitz, A.; Reeves, R.J.; Allen, M.W. Hydrogen-related excitons and their excited-state transitions in ZnO. Phys. Rev. B 2017, 95, 054120. [Google Scholar] [CrossRef]
- Versavel, M.Y.; Haber, J.A. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films 2007, 515, 7171–7176. [Google Scholar] [CrossRef]
- Carron, R.; Andres, C.; Avancini, E.; Feurer, T.; Nishiwaki, S.; Pisoni, S.; Fu, F.; Lingg, M.; Romanyuk, Y.E.; Buecheler, S.; et al. Bandgap of thin film solar cell absorbers: A comparison of various determination methods. Thin Solid Films 2019, 669, 482–486. [Google Scholar] [CrossRef]
- Darga, A.; Mencaraglia, D.; Longeaud, C.; Savenije, T.J.; O’Regan, B.; Bourdais, S.; Muto, T.; Delatouche, B.; Dennler, G. On Charge Carrier Recombination in Sb2S3 and Its Implication for the Performance of Solar Cells. J. Phys. Chem. C 2013, 117, 20525–20530. [Google Scholar] [CrossRef]
- Eensalu, J.S.; Katerski, A.; Kärber, E.; Weinhardt, L.; Blum, M.; Heske, C.; Yang, W.; Oja Acik, I.; Krunks, M. Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows. Beilstein J. Nanotechnol. 2019, 10, 2396–2409. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, E.; Pfadler, T.; Kalb, J.; Dorman, J.A.; Sommer, D.; Hahn, G.; Weickert, J.; Schmidt-Mende, L. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells. Adv. Sci. 2015, 2, 1500059. [Google Scholar] [CrossRef]
- Kieven, D.; Dittrich, T.; Belaidi, A.; Tornow, J.; Schwarzburg, K.; Allsop, N.; Lux-Steiner, M. Effect of internal surface area on the performance of ZnO∕In2S3∕CuSCN solar cells with extremely thin absorber. Appl. Phys. Lett. 2008, 92, 153107. [Google Scholar] [CrossRef]
Cycle Number | VOC (mV) | JSC (mA/cm2) | Rs (Ω·cm2) | Rsh (Ω·cm2) | FF (%) | PCE (%) | No. of Cells |
---|---|---|---|---|---|---|---|
30 | 605 (481 ± 49) | 5.48 (4.80 ± 0.87) | 16.0 (24.8 ± 5.3) | 2784 (1394 ± 789) | 60.2 (51.7 ± 3.2) | 2.00 (1.22 ± 0.38) | 12 |
50 | 530 (499 ± 32) | 6.97 (6.51 ± 0.32) | 22.9 (26.8 ± 3.9) | 980 (681 ± 442) | 46.9 (44.6 ± 4.3) | 1.73 (1.46 ± 0.25) | 9 |
70 | 502 (484 ± 56) | 12.08 (10.90 ± 0.76) | 15.2 (15.3 ± 1.5) | 221 (343 ± 107) | 46.7 (43.7 ± 2.2) | 2.83 (2.32 ± 0.42) | 10 |
90 | 399 (323 ± 94) | 1.57 (1.38 ± 0.30) | 84.9 (127 ± 38) | 818 (630 ± 719) | 43.8 (33.4 ± 8.5) | 0.27 (0.16 ± 0.08) | 16 |
Materials | Architecture | Sb2S3 shell | HTM | VOC (mV) | JSC (mA/cm2) | FF (%) | PCE (%) | Reference |
---|---|---|---|---|---|---|---|---|
ZnO/Sb2S3 | Full impregnation | Thermal evaporation | P3HT | 450 | 16.0 | 40 | 2.9 | [53] |
ZnO/ZnS/Sb2S3 | Core–shell | Chemical conversion | P3HT | 440 | 5.57 | 54 | 1.32 | [54] |
ZnO/TiO2/Sb2S3 | Core–shell | CSP | P3HT | 656 | 7.5 | 47 | 2.3 | [55] |
ZnO/Sb2S3 | Core–shell | CBD | Electrolyte | 438 | 1.46 | 31 | 0.20 | [57] |
ZnO/Sb2S3:Cu | Core–shell | SILAR | Electrolyte | 580 | 9.18 | 59 | 3.14 | [58] |
ZnO/Sb2S3 | Core–shell | SILAR | Electrolyte | 586 | 7.02 | 59 | 2.43 | [59] |
ZnO/Sb2S3 | Core–shell | SILAR | Electrolyte | 582 | 5.91 | 59 | 2.04 | [60] |
ZnO/TiO2/Sb2S3 | Core–shell | CSP | P3HT | 502 | 12.08 | 46.7 | 2.83 | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hector, G.; Eensalu, J.S.; Katerski, A.; Roussel, H.; Chaix-Pluchery, O.; Appert, E.; Donatini, F.; Acik, I.O.; Kärber, E.; Consonni, V. Optimization of the Sb2S3 Shell Thickness in ZnO Nanowire-Based Extremely Thin Absorber Solar Cells. Nanomaterials 2022, 12, 198. https://doi.org/10.3390/nano12020198
Hector G, Eensalu JS, Katerski A, Roussel H, Chaix-Pluchery O, Appert E, Donatini F, Acik IO, Kärber E, Consonni V. Optimization of the Sb2S3 Shell Thickness in ZnO Nanowire-Based Extremely Thin Absorber Solar Cells. Nanomaterials. 2022; 12(2):198. https://doi.org/10.3390/nano12020198
Chicago/Turabian StyleHector, Guislain, Jako S. Eensalu, Atanas Katerski, Hervé Roussel, Odette Chaix-Pluchery, Estelle Appert, Fabrice Donatini, Ilona Oja Acik, Erki Kärber, and Vincent Consonni. 2022. "Optimization of the Sb2S3 Shell Thickness in ZnO Nanowire-Based Extremely Thin Absorber Solar Cells" Nanomaterials 12, no. 2: 198. https://doi.org/10.3390/nano12020198
APA StyleHector, G., Eensalu, J. S., Katerski, A., Roussel, H., Chaix-Pluchery, O., Appert, E., Donatini, F., Acik, I. O., Kärber, E., & Consonni, V. (2022). Optimization of the Sb2S3 Shell Thickness in ZnO Nanowire-Based Extremely Thin Absorber Solar Cells. Nanomaterials, 12(2), 198. https://doi.org/10.3390/nano12020198