Biogenic Ferrihydrite Nanoparticles Produced by Klebsiella oxytoca: Characterization, Physicochemical Properties and Bovine Serum Albumin Interactions
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- Guinier-Porod:
- (ii)
- Ellipsoid model:
- (iii)
- Triaxial ellipsoid: the scattering for randomly oriented particles of triaxial ellipsoidal form ( is defined by the average over all orientations of the solid angle Ω by Equations (5) and (6):
- (iv)
3. Results and Discussions
3.1. Morphological and Structural Characterization of the Biogenic Ferrihydrite Nanoparticles
3.1.1. Scanning Electron Microscopy (SEM) Characterization
3.1.2. Energy Dispersive Spectroscopy (EDS)
3.1.3. Biogenic Ferrihydrite SAXS Investigation
3.2. Spectroscopic Approach to Investigate the Binding of Biogenic Ferrihydrite Nanoparticles to BSA
3.2.1. UV-Vis Characterization of BSA-Biogenic Ferrihydrite Nanoparticles Complexes
3.2.2. Characterization of the Fluorescence Quenching Mechanism of BSA by Ferrihydrite Nanoparticles
3.2.3. Fluorescence Resonance Energy Transfer between Bovine Serum Albumin and Ferrihydrite Nanoparticles (FRET)
3.2.4. Stability of BSA in the Presence of the Ferrihydrite Nanoparticles
3.3. Exploration of BSA Binding Site by Docking
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Šafařík, I.; Šafaříková, M. Magnetic Nanoparticles and Biosciences. In Nanostructured Materials; Hofmann, H., Rahman, Z., Schubert, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Schüler, D. Biogenic nanoparticles: Production, characterization, and application of bacterial magnetosomes. J. Phys. Condens. Matter 2006, 18, 2815–2828. [Google Scholar] [CrossRef]
- Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006, 83, 132–140. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanoparticle Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Krumov, N.; Perner-Nochta, I.; Oder, S.; Gotcheva, V.; Angelov, A.; Posten, C. Production of Inorganic Nanoparticles by Microorganisms. Chem. Eng. Technol. 2009, 32, 1026–1035. [Google Scholar] [CrossRef]
- Gilles, C.; Bonville, P.; Rakoto, H.; Broto, J.M.; Wong, K.K.W.; Mann, S. Magnetic hysteresis and superantiferromagnetism in ferritin nanoparticles. J. Magn. Magn. Mater. 2002, 241, 430–440. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Gurevich, Y.L.; Denisova, E.A.; Iskhakov, R.S.; Ladygina, V.P.; Puzyr’, A.P.; Pustoshilov, P.P.; Bitekhtina, M.A. Iron-containing nanoparticles from microbial metabolism. Inorg. Mater. 2006, 42, 763–768. [Google Scholar] [CrossRef]
- Stolyar, S.V.; Bayukov, O.A.; Gurevich, Y.L.; Ladygina, V.P.; Iskhakov, R.S.; Pustoshilov, P.P. Mössbauer study of bacterial ferrihydrite. Inorg. Mater. 2007, 43, 638–641. [Google Scholar] [CrossRef]
- Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.; Wei, S.; Ge, X.; Zhou, J.; Yu, B.; Shen, J. A facile drug delivery system preparation through the interaction between drug and iron ion of transferrin. J. Nanoparticle Res. 2013, 15, 1929. [Google Scholar] [CrossRef]
- Raikher, Y.L.; Stepanov, V.I.; Stolyar, S.V.; Ladygina, V.P.; Balaev, D.A.; Ishchenko, L.; Balasoiu, M. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca. Phys. Solid State 2010, 52, 298–305. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Mohanraj, K.; Sivakumar, G. Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method. Sains Malays. 2017, 46, 1935–1942. [Google Scholar] [CrossRef]
- Ishchenko, L.A.; Stolyar, S.V.; Ladygina, V.P.; Raikher, Y.L.; Balasoiu, M.; Bayukov, O.A.; Iskhakov, R.S.; Inzhevatkin, E.V. Magnetic properties and application of biomineral particles produced by bacterial culture. Phys. Proc 2010, 9, 279–282. [Google Scholar] [CrossRef]
- Kianpour, S.; Ebrahiminezhad, A.; Negahdaripour, M.; Mohkam, M.; Mohammadi, F.; Niknezhad, S.V.; Ghasemi, Y. Characterization of biogenic Fe (III)-binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotechnol. Prog. 2018, 34, 1167–1176. [Google Scholar] [CrossRef]
- Sana, B.; Johnson, E.; Lim, S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2015, 1850, 2544–2551. [Google Scholar] [CrossRef] [Green Version]
- Marcano, L.; García-Prieto, A.; Muñoz, D.; Barquín, L.F.; Orue, I.; Alonso, J.; Muela, A.; Fdez-Gubieda, M.L. Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2017, 1861, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Kianpour, S.; Ebrahiminezhad, A.; Deyhimi, M.; Negahdaripour, M.; Raee, M.J.; Mohkam, M.; Rezaee, H.; Irajie, C.; Berenjian, A.; Ghasemi, Y. Structural characterization of polysaccharide-coated iron oxide nanoparticles produced by Staphylococcus warneri, isolated from a thermal spring. J. Basic Microbiol. 2019, 59, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Chilom, C.G.; Gazdaru, D.M.; Bacalum, M.; Balasoiu, M.; Stoler, S.; Popescu, A.I. Biomedical Application of Biogenic Ferrihydrite Nanoparticles. Rom. Rep. Phys. 2017, 62, 701. [Google Scholar]
- Chilom, C.G.; David, M.; Florescu, M. Monitoring biomolecular interaction between folic acid and bovine serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118074. [Google Scholar] [CrossRef] [PubMed]
- Bălășoiu, M.; Stolyar, S.V.; Iskhakov, R.S.; Ishchenko, L.A.; Raikher, Y.L.; Kuklin, A.I.; Orelovich, O.L.; Kovalev, Y.S.; Kurkin, T.S.; Arzumanian, G.M. Hierarchical structure investigations of biogenic ferrihydrite samples. Rom. J. Phys. 2010, 55, 782–789. Available online: http://www.nipne.ro/rjp/2010_55_7-8/0782_0789.pdf (accessed on 26 August 2021).
- Stolyar, S.V.; Balaev, D.A.; Ladygina, V.P.; Pankrats, A.I.; Yaroslavtsev, R.N.; Velikanov, D.A.; Iskhakov, R.S. Ferromagnetic Resonance Study of Biogenic Ferrihydrite Nanoparticles: Spin-Glass State of Surface Spins. Jetp Lett. 2020, 111, 183–187. [Google Scholar] [CrossRef]
- Chilom, C.G.; Bacalum, M.; Stănescu, M.M.; Florescu, M. Insight into the interaction of human serum albumin with folic acid: A comparative biophysical study. Spectrochim. Acta 2018, 204, 648–656. [Google Scholar] [CrossRef]
- Chilom, C.G.; Zorilă, B.; Bacalum, M.; Bălăşoiu, M.; Yaroslavtsev, R.; Stolyar, S.V.; Tyutyunnicov, S. Ferrihydrite nanoparticles interaction with model lipid membranes. Chem. Phys. Lipids 2020, 226, 104851. [Google Scholar] [CrossRef] [PubMed]
- Sandu, N.; Chilom, C.G.; Popescu, A.I. Spectroscopic insights on the binding of rutin to bovine serum albumin. Rom. J. Phys. 2020, 65, 703. [Google Scholar]
- Sandu, N.; Chilom, C.G.; Florescu, M. Molecular insights into binding mechanism of rutin to bovine serum albumin—Levothyroxine complex: Spectroscopic and molecular docking approaches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120261. [Google Scholar] [CrossRef] [PubMed]
- Chilom, C.G.; Nistorescu, A. A spectroscopic study of the interaction of HSA with tetracaine. IJBB 2016, 53, 206–211. [Google Scholar]
- Chilom, C.G.; Zorilă, B.; Popescu, A.I. Characterization of Some Physico-Chemical Properties and Interactions of Human and Bovine Serum Albumins with Mitomycin C. Rom. J. Phys. 2017, 62, 703. [Google Scholar]
- Chilom, C.; Barangă, G.; Găzdaru, D.; Popescu, A. Characterisation by fluorescence of human and bovine serum albumins in interaction with eosin Y. J. Optoelectron. Adv. Mater. 2013, 15, 311–316. [Google Scholar]
- Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- Murugova, T.N.; Vlasov, A.V.; Ivankov, O.I.; Rogachev, A.V.; Ryzhykau, Y.L.; Soloviov, D.V.; Zhigunov, A.; Zinovev, E.V.; Kovalev, Y.S.; Round, A.; et al. Low resolution structural studies of apoferritin via SANS and SAXS: The effect of concentration. J. Optoelectron. Adv. Mater. 2015, 17, 1397–1402. [Google Scholar]
- Guinier, A.; Fournet, G. Small-Angle Scattering of X-Rays; John Wiley and Sons: Hoboken, NJ, USA, 1955. [Google Scholar]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Doucet, M.; Cho, J.H.; Gervaise, A.; Bakker, J.; Bouwman, W.; Butler, P.; Campbell, P.; Gonzales, K.M.; Heenan, R.; Jackson, A.; et al. SasView; Version 4.2.0.; CERN: Meyrin, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, NY, USA, 2007; pp. 443–475. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucl. Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Majorek, K.A.; Porebski, P.J.; Dayal, A.; Zimmerman, M.D.; Jablonska, K.; Stewart, A.J.; Chruszcz, M.; Minor, W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2012, 52, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RCSB. Available online: https://www.rcsb.org/structure/3V03 (accessed on 4 September 2021).
- Jansen, E.; Kyek, A.; Schafer, W.; Schwertmann, U. The structure of six-line ferrihydrite Locality: Synthetic Sample: Defective refinement. Appl. Phys. A 2002, 74, S1004–S1006. [Google Scholar] [CrossRef]
- Crystallography Open Database. Available online: https://wiki.crystallography.net/cod/citing/ (accessed on 4 September 2021).
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolyar, S.V.; Kolenchukova, O.A.; Boldyreva, A.V.; Kudryasheva, N.S.; Gerasimova, Y.V.; Krasikov, A.A.; Yaroslavtsev, R.N.; Bayukov, O.A.; Ladygina, V.P.; Birukova, E.A. Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect. Biomedicines 2021, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Jones, B. Modern authigenic amorphous and crystalline iron oxyhydroxides in subsurface Ordovician dolostones (Jinan, North China Block): Biomineralization and crystal morphology. Sediment. Geol. 2021, 426, 106044. [Google Scholar] [CrossRef]
- Langley, S.; Igric, P.; Takamashi, Y.; Sakai, Y.; Fortin, D.; Hannington, M.D.; Schwarz-Schampera, U. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, Southwest Pacific Ocean. Geobiology 2009, 7, 35–49. [Google Scholar] [CrossRef]
- Guo, H.; Barnard, A.S. Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability. J. Mater. Chem. A 2013, 1, 27–42. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Luo, Q.; Wang, L.; Liu, S.; Peng, Y.; Wang, H.; Shen, L.; Li, Q.; Wang, Y. Maghemite (γ-Fe2O3) nanoparticles enhance dissimilatory ferrihydrite reduction by Geobacter sulfurreducens: Impacts on iron mineralogical change and bacterial interactions. J. Environ. Sci. 2019, 78, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Poggenburg, C.; Mikutta, R.; Sander, M.; Schippers, A.; Marchanka, A.; Dohrmann, R.; Guggenberger, G. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chem. Geol. 2016, 447, 133–147. [Google Scholar] [CrossRef]
- Peretyazhko, T.S.; Zachara, J.M.; Kennedy, D.W.; Fredrikson, J.K.; Arey, B.W.; McKinley, J.P.; Wang, C.M.; Dohnalkova, A.C.; Xia, Y. Ferrous phosphate surface precipitates resulting from the reduction of intragrain 6-line ferrihydrite by Schewanella oneidensis MR-1. Geochim. Cosmochim. Acta 2010, 74, 3751–3767. [Google Scholar] [CrossRef]
- Zhu, F.; Huang, Y.; Ni, H.; Tang, J.; Zhu, Q.; Long, Z.; Zou, L. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. Chemosphere 2022, 288, 132661. [Google Scholar] [CrossRef] [PubMed]
- Stolyar, S.V.; Bayukov, O.A.; Ladygina, V.P.; Iskhakov, R.S.; Ishchenko, L.A.; Yakovchuk, V.Y.; Dobretsov, K.G.; Pozdnyakov, A.I.; Piksina, O.E. Mössbauer Investigation of Temperature Transformations in Bacterial Ferrihydrite. Phys. Solid State 2011, 53, 100–104. [Google Scholar] [CrossRef]
- Leone, S.; de Castro, C.; Parrilli, M.; Baldi, F.; Lanzetta, R. Structure of the Iron-Binding Exopolysaccharide Produced Anaerobically by the Gram-Negative Bacterium Klebsiella oxytoca BAS-10. Eur. J. Org. Chem. 2007, 2007, 5183–5189. [Google Scholar] [CrossRef] [Green Version]
- Baldi, F.; Marchetto, D.; Battistel, D.; Daniele, S.; Faleri, C.; de Castro, C.; Lanzetta, R. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage. J. Appl. Microbiol. 2009, 107, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Anghel, L.; Balasoiu, M.; Ishchenko, L.A.; Stolyar, S.V.; Kurkin, T.S.; Rogachev, A.V.; Kuklin, A.I.; Kovalev, Y.S.; Raikher, Y.L.; Iskhakov, R.S.; et al. Characterization of bio-synthesized nanoparticles produced by Klebsiella oxytoca. J. Phys. Conf. Ser. 2012, 351, 012005. [Google Scholar] [CrossRef]
- Jiao, Y.; Cody, G.D.; Harding, A.K.; Wilmes, P.; Schrenk, M.; Wheeler, K.E.; Baufield, J.F.; Thelen, M.P. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl. Environ. Microbiol. 2010, 76, 2916–2922. [Google Scholar] [CrossRef] [Green Version]
- Kichanov, S.; Pantelica, A.; Pantelica, D.; Stolyar, S.; Iskhakov, R.; Aranghel, D.; Ionescu, P.; Vladoiu, R.; Balasoiu, M. Structural and compositional specifications on biogenic ferrihydrite nanoparticles production by Klebsiella Oxytoca. Rom. Rep. Phys. 2018, 70, 511. [Google Scholar]
- Beaucage, G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 1995, 28, 717–728. [Google Scholar] [CrossRef]
- Amiri, M.; Jankeje, K.; Albani, J.R. Characterization of human serum albumin forms with pH. Fluorescence lifetime studies. J. Pharm. Biomed. Anal. 2010, 51, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Khaibrakhmanova, D.; Nikiforova, A.; Sedov, I. Binding Constants of Substituted Benzoic Acids with Bovine Serum Albumin. Pharmaceuticals 2020, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Type | Cultivation Time | Illumination Regime | Type of Biomass |
---|---|---|---|---|
S1 | Fe12 | 1 week | Dark | frozen |
S2 | Fe12 | 1 week | Dark | fresh |
S3 | Fe34 | 3 weeks | Dark | frozen |
S4 | Fe34 | 5 weeks | Dark | fresh |
Composition/Sample | S1 | S2 | S3 | S4 | S5 * |
---|---|---|---|---|---|
C | 14.70 | 16.85 | 11.14 | 15.26 | 16.50 |
N | - | 5.14 | 5.14 | - | - |
O | 42.00 | 42.26 | 42.02 | 26.62 | 60.53 |
Na | 0.43 | 0.54 | 0.36 | 0.75 | - |
Mg | 0.14 | 0.25 | 0.26 | 0.14 | - |
Si | 0.05 | - | 0.06 | - | - |
P | 11.63 | 10.40 | 11.90 | 12.49 | 8.45 |
S | - | 0.12 | 0.06 | 0.12 | - |
Cl | 0.33 | 5.79 | 0.55 | 9.02 | 0.33 |
K | 2.62 | 3.38 | 1.96 | 4.18 | 1.68 |
Ca | 4.79 | 3.46 | 6.90 | 9.47 | 2.93 |
Fe | 23.31 | 16.96 | 19.66 | 21.94 | 9.20 |
Other | - | - | - | - | 0.38 |
Total | 100 | 100 | 100 | 100 | 100 |
Sample | Q-Range | Fitting Model | Parameters (nm) |
---|---|---|---|
S1 | 0.004 ÷ 0.04 | Guinier-Porod | Rg = 12.6 ± 0.2 S = 2 α = 4.03 |
0.04 ÷ 1.2 | Ellipsoid | Ra = 0.2 ± 0.05 Rb = 12.5 ± 0.2 | |
S2 | 0.005 ÷ 1.2 | Unified exponential-power law (1 level) | Rg = 29.0 ± 0.1 α = 2.65 ± 0.005 |
S3 | 0.005 ÷ 0.02 | Guinier-Porod | Rg = 29.4 ± 0.1 S = 0 α = 3.52 ± 0.004 |
0.02 ÷ 0.15 | Triaxial ellipsoid | ra = 5.5 ± 0.2 rb = 10.5 ± 0.2 rc = 2.7 ± 0.1 | |
0.15 ÷ 0.9 | Guinier-Porod | Rg= 14.5 ± 0.1 S = 1 α = 2.95 ± 0.005 | |
S4 | 0.005 ÷ 1.2 | Unified exponential-power law (2 levels) | Rg = 12.6 ± 0.2 S = 2 α = 4.03 |
Type of Nanoparticles | KSV (M−1) | kq (M−1 s−1) | Kb (M−1) | n |
---|---|---|---|---|
S1 | 0.90 × 106 | 1.30 × 1014 | 13.36 × 103 | 0.89 |
S2 | 0.81 × 106 | 1.17 × 1014 | 6.37 × 103 | 0.76 |
S3 | 4.16 × 106 | 6.02 × 1014 | 1.34 × 103 | 0.72 |
S4 | 3.55 × 106 | 5.14 × 1014 | 0.87 × 103 | 0.70 |
Type of Nanoparticles | J × 1013 (M−1 cm−1 nm4) | E | R0 (nm) | r (nm) |
---|---|---|---|---|
S1 | 2.31 | 0.19 | 1.91 | 2.42 |
S2 | 1.29 | 0.21 | 1.74 | 2.15 |
S3 | 1.23 | 0.29 | 1.72 | 1.99 |
S4 | 2.38 | 0.18 | 1.93 | 2.47 |
Sample | ΔH (kJ mol−1K−1) | ΔS (J mol−1K−1) | Tm (°C) |
---|---|---|---|
BSA | 75.582 | 233.70 | 49.26 |
BSA-S1 | 81.237 | 247.15 | 54.53 |
BSA-S2 | 81.960 | 248.38 | 55.82 |
BSA-S3 | 73.232 | 223.26 | 53.85 |
BSA-S4 | 80.478 | 245.12 | 54.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazacu, N.; Chilom, C.G.; Iftimie, S.; Bălășoiu, M.; Ladygina, V.P.; Stolyar, S.V.; Orelovich, O.L.; Kovalev, Y.S.; Rogachev, A.V. Biogenic Ferrihydrite Nanoparticles Produced by Klebsiella oxytoca: Characterization, Physicochemical Properties and Bovine Serum Albumin Interactions. Nanomaterials 2022, 12, 249. https://doi.org/10.3390/nano12020249
Cazacu N, Chilom CG, Iftimie S, Bălășoiu M, Ladygina VP, Stolyar SV, Orelovich OL, Kovalev YS, Rogachev AV. Biogenic Ferrihydrite Nanoparticles Produced by Klebsiella oxytoca: Characterization, Physicochemical Properties and Bovine Serum Albumin Interactions. Nanomaterials. 2022; 12(2):249. https://doi.org/10.3390/nano12020249
Chicago/Turabian StyleCazacu, Nicoleta, Claudia G. Chilom, Sorina Iftimie, Maria Bălășoiu, Valentina P. Ladygina, Sergey V. Stolyar, Oleg L. Orelovich, Yuriy S. Kovalev, and Andrey V. Rogachev. 2022. "Biogenic Ferrihydrite Nanoparticles Produced by Klebsiella oxytoca: Characterization, Physicochemical Properties and Bovine Serum Albumin Interactions" Nanomaterials 12, no. 2: 249. https://doi.org/10.3390/nano12020249
APA StyleCazacu, N., Chilom, C. G., Iftimie, S., Bălășoiu, M., Ladygina, V. P., Stolyar, S. V., Orelovich, O. L., Kovalev, Y. S., & Rogachev, A. V. (2022). Biogenic Ferrihydrite Nanoparticles Produced by Klebsiella oxytoca: Characterization, Physicochemical Properties and Bovine Serum Albumin Interactions. Nanomaterials, 12(2), 249. https://doi.org/10.3390/nano12020249