Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Synthesis of PtNi Alloy Nanoparticles
2.4. Fabrication of PtNi-Modified Electrode
2.5. Cell Culture
2.6. Biocompatibility Analysis
2.7. Detection of H2S in Live Cells
3. Results
3.1. Electrochemical Detection of H2S at PtNi/SPE
3.2. Amperometric Determination of H2S at PtNi/SPE
3.3. Repeatability and Reproducibility
3.4. Real Sample Analysis
3.5. In Vitro Biological Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, M.D.; Hall, J.R.; Schoenfisch, M.H. A direct and selective electrochemical hydrogen sulfide sensor. Anal. Chim. Acta 2019, 1045, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Manibalan, K.; Mani, V.; Chang, P.-C.; Huang, C.-H.; Huang, S.-T.; Marchlewicz, K.; Neethirajan, S. Electrochemical latent redox ratiometric probes for real-time tracking and quantification of endogenous hydrogen sulfide production in living cells. Biosens. Bioelectron. 2017, 96, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-B.; Liu, Y.-L.; Wang, W.-J.; Zhang, H.-W.; Qin, Y.; Guo, S.; Zhang, X.-W.; Fu, L.; Huang, W.-H. Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring. Anal. Chem. 2018, 90, 1136–1141. [Google Scholar] [CrossRef]
- Hall, J.R.; Schoenfisch, M.H. Direct electrochemical sensing of hydrogen sulfide without sulfur poisoning. Anal. Chem. 2018, 90, 5194–5200. [Google Scholar] [CrossRef]
- Xu, T.; Scafa, N.; Xu, L.-P.; Zhou, S.; Al-Ghanem, K.A.; Mahboob, S.; Fugetsu, B.; Zhang, X. Electrochemical hydrogen sulfide biosensors. Analyst 2016, 141, 1185–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, H.; Xu, H.; Wang, C.; Chen, C.; Wang, C.; Jin, L.; Du, Y. A new ratiometric electrochemical sensor using electroactive GO/MB/Ag nanocomposites for H 2 S detection in biological samples. J. Nanoparticle Res. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Marzouk, S.A.; Al-Marzouqi, M.H. Analyzer for continuous monitoring of H2S in gas streams based on a novel thermometric detection. Sens. Actuators B Chem. 2012, 162, 377–383. [Google Scholar] [CrossRef]
- Gu, W.; Zheng, W.; Liu, H.; Zhao, Y. Electroactive Cu2O nanocubes engineered electrochemical sensor for H2S detection. Anal. chim. Acta 2021, 1150, 338216. [Google Scholar] [CrossRef]
- Ibrahim, H.; Serag, A.; Farag, M.A. Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review. J. Adv. Res. 2021, 27, 137–153. [Google Scholar] [CrossRef]
- Bitziou, E.; Joseph, M.B.; Read, T.L.; Palmer, N.; Mollart, T.; Newton, M.E.; Macpherson, J.V. In situ optimization of pH for parts-per-billion electrochemical detection of dissolved hydrogen sulfide using boron doped diamond flow electrodes. Anal. Chem. 2014, 86, 10834–10840. [Google Scholar] [CrossRef]
- Kaushik, R.; Ghosh, A.; Jose, D.A. Recent progress in hydrogen sulphide (H2S) sensors by metal displacement approach. Coord Chem. Rev. 2017, 347, 141–157. [Google Scholar] [CrossRef]
- Rahman, N.S.A.; Greish, Y.E.; Mahmoud, S.T.; Qamhieh, N.N.; El-Maghraby, H.F.; Zeze, D. Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H2S gas sensing application. Carbohydr. Polym. 2021, 258, 117643. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Aziz, A.; Ashraf, G.; Wang, Z.; Wang, J.; Azeem, M.; Chen, X.; Xiao, F.; Liu, H. Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: High sensing performance toward sulfide in biotic fluids. ACS Appl. Mater. Interfaces 2018, 10, 36675–36685. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, W.; Wu, T.; Ma, X.; Jiang, K.; Jin, X. Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. Electrochem. Commun. 2018, 88, 93–96. [Google Scholar] [CrossRef]
- Dionigi, F.; Weber, C.C.; Primbs, M.; Gocyla, M.; Bonastre, A.M.; Spori, C.; Schmies, H.; Hornberger, E.; Kuhl, S.; Drnec, J. Controlling near-surface Ni composition in octahedral PtNi (Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Lett. 2019, 19, 6876–6885. [Google Scholar] [CrossRef] [Green Version]
- Kumeda, T.; Otsuka, N.; Tajiri, H.; Sakata, O.; Hoshi, N.; Nakamura, M. Interfacial structure of PtNi surface alloy on Pt (111) electrode for oxygen reduction reaction. ACS Omega 2017, 2, 1858–1863. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zou, S. PtNi Nanoparticles Encapsulated in Few Carbon Layers as High-Performance Catalysts for Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2019, 2, 2769–2778. [Google Scholar] [CrossRef]
- Fan, C.; Wang, G.; Zou, L.; Fang, J.; Zou, Z.; Yang, H. Composition-and shape-controlled synthesis of the PtNi alloy nanotubes with enhanced activity and durability toward oxygen reduction reaction. J. Power Sources 2019, 429, 1–8. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, X.; Hu, H.; Liu, Y.; Zheng, H.; Yang, D.; Chen, L.; Cao, M.; Xu, Y.; Min, Y. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Wu, Y.; An, Y.; Xu, L.; Wan, C. Hydrogen Production from Ammonia Borane over PtNi Alloy Nanoparticles Immobilized on Graphite Carbon Nitride. Catalysts 2019, 9, 1009. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Yuan, M.; Sun, Z.; Li, H.; Nan, C.; Sun, G.; Ma, S. The in situ growth of ultrathin Fcc-NiPt nanocrystals on graphene for methanol and formic acid oxidation. Dalton Trans. 2018, 47, 15131–15140. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zhang, J.; Liu, Y.; Zhao, Y.; Zhang, B. Rapid quantitative determination of hydrogen peroxide using an electrochemical sensor based on PtNi alloy/CeO2 plates embedded in N-doped carbon nanofibers. Electrochim. Acta 2019, 295, 997–1005. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Wang, Z.; Ashraf, G.; Wang, J.; Luo, H.; Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@ CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal. Chem. 2019, 91, 3912–3920. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, D.; Wang, J.; Hu, P.; Jiang, Z. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing. Anal. Chim. Acta 2017, 975, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, H.; Sun, H.; Gao, R.; Liu, H.; Wang, X.; Xu, P.; Xun, L. Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosens. Bioelectron. 2017, 98, 29–35. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Li, P.; Li, X.; Zhang, P. A Direct Electrochemical H2S Sensor Based on Ti3C2Tx MXene. ChemElectroChem 2021, 8, 3658–3665. [Google Scholar] [CrossRef]
Modified Electrodes | Type | Linear Range (µM) | LOD (µM) | Ref. |
---|---|---|---|---|
Cu2O−CuO@AuNIs ODH | Amperometry | 1–11,780 | 0.7 | [13] |
magnetic CNT/Co/MoS2 | Amperometry | 0.25–13,327 | 0.12 | [24] |
Escherichia coli/NPG | Cyclic voltammetry | 0.4–33,000 | 0.026 | [25] |
Ti3C2Tx MXene | Amperometry | 0.1–300 | 0.016 | [26] |
Boron Doped Diamond Flow Electrodes | Flow injection Amperometry | 0−51.2 | 0.37 ± 0.03 | [10] |
Electropolymerized film-modified GCEs | Amperometry | 0–15 | 0.1 | [1] |
PtNi | Amperometry | 0.0125–1031 | 0.004 | Present work |
Samples | Added (µM) | Found (µM) | Recovery (%) | * RSD (%) |
---|---|---|---|---|
Pond water | 0 | 0 | - | 3.39 |
10 | 9.24 | 92.4 | ||
Human urine | 0 | 0 | - | 4.2 |
10 | 9.56 | 95.6 | ||
Saliva | 0 | 0 | - | 4.65 |
10 | 9.88 | 98.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, A.K.; Keerthi, M.; Sakthivel, R.; Dhawan, U.; Liu, X.; Chung, R.-J. Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. Nanomaterials 2022, 12, 258. https://doi.org/10.3390/nano12020258
Panda AK, Keerthi M, Sakthivel R, Dhawan U, Liu X, Chung R-J. Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. Nanomaterials. 2022; 12(2):258. https://doi.org/10.3390/nano12020258
Chicago/Turabian StylePanda, Asit Kumar, Murugan Keerthi, Rajalakshmi Sakthivel, Udesh Dhawan, Xinke Liu, and Ren-Jei Chung. 2022. "Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells" Nanomaterials 12, no. 2: 258. https://doi.org/10.3390/nano12020258
APA StylePanda, A. K., Keerthi, M., Sakthivel, R., Dhawan, U., Liu, X., & Chung, R. -J. (2022). Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. Nanomaterials, 12(2), 258. https://doi.org/10.3390/nano12020258